Up

Enumerating orbits of groups

About

This page contains lecture notes and references for a series of lectures on “Enumerating orbits of groups” within the programme “Combinatorial methods in enumerative algebra” at the International Centre for Theoretical Sciences in Bengaluru (India), 2–13 December 2024.

Lecture notes

These notes are licensed under CC BY 4.0.

Zeta

Zeta (2014–present) is a package for the SageMath computer algebra system. It supports the computation of several types of zeta functions associated with algebraic structures. The most recent version is available on GitHub.

References

The following sources are referenced in or related to the lecture notes.

  1. A. A. Albert, Non-associative algebras. I. Fundamental concepts and isotopy. Ann. of Math. (2) 43 (1942), 685–707.
  2. P. Belkale and P. Brosnan, Matroids, motives, and a conjecture of Kontsevich. Duke Math. J. 116 (2003), no. 1, 147–188.
  3. N. Avni, B. Klopsch, U. Onn, and C. Voll, Similarity classes of integral $\mathfrak p$-adic matrices and representation zeta functions of groups of type $\mathsf A_2$. Proc. Lond. Math. Soc. (3) 112 (2016), no.2, 267–350.
  4. E. A. Bender, On Buckheister's [sic] enumeration of $n\times n$ matrices. J. Combinatorial Theory Ser. A 17 (1974), 273–274.
  5. P. G. Buckhiester, The number of $n\times n$ matrices of rank $r$ and trace $\alpha$ over a finite field. Duke Math. J. 39 (1972), 695–699.
  6. I. Carlitz, Representations by Skew Forms in a Finite Field. Arch. Math. 5 (1954), 19–31.
  7. A. Carnevale and T. Rossmann, Linear relations with disjoint supports and average sizes of kernels. J. Lond. Math. Soc. 106 (2022), no. 3, 1759–1809.
  8. A. Carnevale, V. D. Moustakas, and T. Rossmann, From coloured permutations to Hadamard products and zeta functions. Proceedings of the 36th Conference on Formal Power Series and Algebraic Combinatorics (Bochum). Séminaire Lotharingien de Combinatoire 91B (2024). Article #56, 12 pp.
  9. A. Carnevale, V. D. Moustakas, and T. Rossmann, Coloured shuffle compatibility, Hadamard products, and ask zeta functions, 19 pages. (preprint)
  10. M. du Sautoy, A nilpotent group and its elliptic curve: non-uniformity of local zeta functions of groups. Israel J. Math. 126 (2001), 269–288.
  11. M. du Sautoy, Counting conjugacy classes. Bull. London Math. Soc. 37 (2005), no.1, 37–44.
  12. J. Fulman and L. Goldstein, Stein's method and the rank distribution of random matrices over finite fields. Ann. Probab. 43 (2015), no.3, 1274–1314.
  13. J. González-Sánchez, A. Jaikin-Zapirain, and B. Klopsch, The representation zeta function of a FAb compact p-adic Lie group vanishes at -2. Bull. Lond. Math. Soc. 46 (2014), no. 2, 239–244.
  14. A. J. Klein, J. B. Lewis, and A. H. Morales, Counting matrices over finite fields with support on skew Young diagrams and complements of Rothe diagrams.. J. Algebraic Combin. 39 (2014), no. 2, 429–456.
  15. D. E. Knuth, Finite semifields and projective planes. J. Algebra 2 (1965), 182–217.
  16. G. Landsberg, Ueber eine Anzahlbestimmung und eine damit zusammenhängende Reihe. J. Reine Angew. Math. 111 (1893), 87–88.
  17. J. B. Lewis, R. I. Liu, A. H. Morales, G. Panova S. V. Sam, and Y. X. Zhang, Matrices with restricted entries and $q$-analogues of permutations. J. Comb. 2 (2011), no. 3, 355–395.
  18. N. Linial and D. Weitz, Random vectors of bounded weight and their linear dependencies (2000).
  19. P. Macedo Lins de Araujo, Bivariate representation and conjugacy class zeta functions associated to unipotent group schemes, I: Arithmetic properties. J. Group Theory 22 (2019), no.4, 741–774.
  20. P. Macedo Lins de Araujo, Bivariate representation and conjugacy class zeta functions associated to unipotent group schemes, II: Groups of type $F$, $G$, and $H$. Internat. J. Algebra Comput. 30 (2020), no.5, 931–975.
  21. J. MacWilliams, Orthogonal matrices over finite fields. Amer. Math. Monthly 76 (1969), 152–164.
  22. E. A. O'Brien and C. Voll, Enumerating classes and characters of p-groups. Trans. Amer. Math. Soc. 367 (2015), no. 11, 7775–7796.
  23. T. Rossmann, A Framework for Computing Zeta Functions of Groups, Algebras, and Modules. In: Böckle et al. (eds), Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory (2017), Springer-Verlag, 561–586.
  24. T. Rossmann, The average size of the kernel of a matrix and orbits of linear groups. Proc. Lond. Math. Soc. (3) 117 (2018), no. 3, 574–616.
  25. T. Rossmann, The average size of the kernel of a matrix and orbits of linear groups, II: duality. J. Pure Appl. Algebra 224 (2020), no. 4, 106203, 28 pages.
  26. T. Rossmann, Enumerating conjugacy classes of graphical groups over finite fields. Bull. Lond. Math. Soc. 54 (2022), no. 5, 1923–1943.
  27. T. Rossmann and C. Voll, Groups, graphs, and hypergraphs: average sizes of kernels of generic matrices with support constraints Mem. Amer. Math. Soc. 294 (2024), no. 1465, vi+120 pp. (preprint)
  28. T. Rossmann, On the enumeration of orbits of unipotent groups over finite fields. To appear in Proc. Amer. Math. Soc. (2025), 15 pages. (preprint)
  29. C. Voll, Functional equations for zeta functions of groups and rings. Ann. of Math. (2) 172 (2010), no.2, 1181–1218.

last modified: 6 December 2024