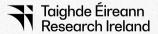
Enumerating conjugacy classes of graphical groups

Tobias Rossmann

Based on joint work with Christopher Voll and joint work with Angela Carnevale and Vassilis D. Moustakas

HIM — August 2025



Graphical groups (over the integers)

Let Γ be a (finite, simple, undirected) graph with vertices ν_1, \ldots, ν_n .

Let \mathcal{I} consist of those (i, j) with i < j and such that $v_i \sim v_i$.

Definition

The graphical group $G_{\Gamma}(\mathbf{Z})$ is defined as follows:

- Generators: x_1, \ldots, x_n and z_{ij} for $(i, j) \in \mathcal{I}$.
- Relations:
 - For i < j,

$$[x_i, x_j] = \begin{cases} z_{ij}, & \text{if } (i, j) \in \mathcal{I}, \\ 1, & \text{otherwise.} \end{cases}$$

• Each z_{ij} is central.

Example

- \bullet $G_{K_2}(\mathbf{Z}) \approx U_3(\mathbf{Z})$ (discrete Heisenberg group)
- ullet $G_{K_d}(\mathbf{Z}) pprox F_{2,d}(\mathbf{Z})$ is the free nilpotent group of class $\leqslant 2$ on d generators.
- $G_{P_d}(\mathbf{Z}) \approx U_{d+1}(\mathbf{Z})/\gamma_3(U_{d+1}(\mathbf{Z}))$

Graphical groups (over rings)

Let R be a commutative ring.

Definition

The graphical group $G_{\Gamma}(R)$ is defined as follows:

- Generators: x_1^r, \ldots, x_n^r and z_{ij}^r for $r \in \mathbb{R}$ and $(i, j) \in \mathcal{I}$.
- Relations:
 - $x_i^r x_i^s = x_i^{r+s}$ and $z_{ij}^r z_{ij}^s = z_{ij}^{r+s}$.
 - For i < j,

$$[x_i^r, x_j^s] = egin{cases} z_{ij}^{rs}, & ext{if } (i,j) \in \mathcal{I}, \\ 1, & ext{otherwise}. \end{cases}$$

• Each z_{ij}^r is central.

Question

Let R be a "friendly" finite ring (e.g. $R = \mathbf{F}_q$).

How do group-theoretic properties of $G_{\Gamma}(R)$ depend on R?

Enumerating conjugacy classes of graphical groups

Let \mathcal{O} be a local PID with maximal ideal \mathfrak{m} . Suppose that $q:=|\mathcal{O}/\mathfrak{m}|$ is *finite*.

Example

- Finite fields: \mathbf{F}_{q} .
- Univariate power series rings over finite fields: $\mathbf{F}_{\mathbf{q}}[z]$.
- Rings of integers of finite extensions of Q_p (p prime).

In fact, these are the only complete examples. We'll assume that \mathcal{O} is *not* a field.

Let

$$\mathsf{Z}^{\mathsf{cc}}_{\mathbf{G}_{\Gamma},\mathcal{O}}(\mathsf{T}) = \sum_{k=0}^{\infty} \mathrm{k}(\mathbf{G}_{\Gamma}(\mathcal{O}/\mathfrak{m}^k))\mathsf{T}^k.$$

Combinatorics in, combinatorics out

Theorem ("Uniformity Theorem"; R. & Voll 2024, 2025+)

Let Γ have \mathfrak{m} edges. There exists $W_{\Gamma}(X,T)\in \mathbf{Q}(X,T)$ such that for each $(\mathcal{O},\mathfrak{m})$,

$$Z_{\mathbf{G}_{\Gamma},\mathcal{O}}^{\mathrm{cc}}(\mathsf{T}) = W_{\Gamma}(\mathsf{q},\mathsf{q}^{\mathfrak{m}}\mathsf{T}).$$

Corollary

Given Γ , the number $k(\mathbf{G}_{\Gamma}(\mathbf{F}_q))$ is a polynomial in q.

We have two algorithms for computing $W_{\Gamma}(X,T)$. Both are based on *toric geometry*. No explicit "combinatorial formula" is known for $W_{\Gamma}(X,T)$.

Question

What are the effects of natural graph-theoretic operations on $W_{\Gamma}(X,T)$?

Joins

The **join** $\Gamma_1 \vee \Gamma_2$ of graphs Γ_1 and Γ_2 is obtained from the disjoint union $\Gamma_1 \oplus \Gamma_2$ by joining each vertex of Γ_1 to each vertex of Γ_2 .

Fact

$$\mathbf{G}_{\Gamma_1 \vee \Gamma_2}(\mathbf{Z}) \approx (\mathbf{G}_{\Gamma_1}(\mathbf{Z}) \, * \, \mathbf{G}_{\Gamma_2}(\mathbf{Z}))/\gamma_3.$$

Let $n_1,n_2\geqslant 0$ be given. Write $z_i=X^{-n_i}.$ Given $W_1(X,T),W_2(X,T)\in \mathbf{Q}(X,T),$ define

$$(W_1 \diamondsuit W_2)(X,T)$$

$$=\frac{z_1z_2X\mathsf{T}-1+W_1(\mathsf{X},z_2\mathsf{T})(1-z_2\mathsf{T})(1-z_2\mathsf{X}\mathsf{T})+W_2(\mathsf{X},z_1\mathsf{T})(1-z_1\mathsf{X}\mathsf{T})}{(1-\mathsf{T})(1-\mathsf{X}\mathsf{T})}$$

= harmless + $W_1(X, z_2T)$ · harmless + $W_2(X, z_1T)$ · harmless.

Theorem (R. & Voll 2025⁺)

Let Γ_i have n_i vertices. Write $z_i = X^{-n_i}$. Then $W_{\Gamma_1 \vee \Gamma_2}(X,T) = W_{\Gamma_1}(X,T) \diamondsuit W_{\Gamma_2}(X,T)$.

For cographs, this was already known (R. & Voll 2024).

Disjoint unions

The Hadamard product of
$$F = \sum_{k=0}^{\infty} a_k T^k$$
 and $G = \sum_{k=0}^{\infty} b_k T^k$ is $F *_T G = \sum_{k=0}^{\infty} a_k b_k T^k$.

Fact

$$W_{\Gamma_1 \oplus \Gamma_2} = W_{\Gamma_1} *_T W_{\Gamma_2}.$$

Theorem (Carnevale, Moustakas, R. 2025)

$$W_{\mathrm{K}_{\mathtt{d}_1} \oplus \cdots \oplus \mathrm{K}_{\mathtt{d}_n}}(X,T) = \frac{\textit{an explicit sum over } \mathrm{B}_n = \{\pm 1\} \wr \mathrm{S}_n}{(1-T)(1-XT)\cdots (1-X^nT)}$$

Corollary (Carnevale, Moustakas, R. 2025)

Fix $n \geqslant 1$. There is an explicit rational function $W_n(X,Y_1,\ldots,Y_n,T)$ such that for all d_1,\ldots,d_n and for each $(\mathcal{O},\mathfrak{m})$,

$$\mathsf{Z}^{\mathsf{cc}}_{\mathsf{F}_{2,d_{1}}\times\cdots\times\mathsf{F}_{2,d_{n}},\mathcal{O}}(\mathsf{q}^{-\sum_{i=1}^{n}\binom{d_{i}}{2}}\mathsf{T})=W_{n}(\mathsf{q},\mathsf{q}^{d_{1}},\ldots,\mathsf{q}^{d_{n}},\mathsf{T}).$$

We're only beginning to understand the combinatorics of Hadamard products of the $W_{\Gamma}(X,T)$.

Thank you!