Irreducibility Testing of Nilpotent Matrix Groups

Tobias Rossmann

Galway, 6 May 2011

This work is supported by the Research Frontiers Programme of Science Foundation Ireland

Matrix groups

Definition

A matrix group over a field K is a subgroup of $GL_d(K)$.

- Matrix groups arise naturally in mathematics (and elsewhere).
- They are one of the basic ways of representing groups on a computer.
 In practice, they are usually given by finite sequences of generating matrices.

Computing with matrix groups

Computing with matrix groups over finite fields

- The "Matrix Group Recognition Project" has essentially been completed (≈ 20 years).
- Many problems have efficient solutions (up to basic oracles).
- Implementations exist (or are being developed) in GAP or MAGMA.

Computing with matrix groups over infinite fields

- Fundamental problems are undecidable (e.g. membership).
- Many computational problems are open.

Recent project (Detinko & Flannery, Eick, O'Brien, ...)

Develop and implement practical algorithms for basic computational problems related to finitely generated matrix groups over infinite fields.

Fundamental problems

Let $G \leq \operatorname{GL}_d(K)$ be given by finitely many generators.

Group-theoretic problems

- ullet Decide if G is finite, soluble, nilpotent,
- Compute centralisers, normalisers,
- Find a finite presentation for G (if possible).
- . . .

Geometric problems

- Decide irreducibility, primitivity, ... of G.
- Orbit-stabiliser problem.
- Decide membership in G of a given $x \in GL_d(K)$.
- . . .

Irreducibility testing

Definition

Let $G \leq \operatorname{GL}_d(K)$. Then G is **reducible** if there exists a proper G-invariant subspace of K^d . Otherwise, G is **irreducible**.

Computational tasks

- lacksquare Decide if G is irreducible.
- $oldsymbol{0}$ If G is reducible, construct an invariant subspace.

Relevance

- Irreducibility is the most fundamental module-theoretic property.
- Reduction to irreducible groups is a common technique in the theory of matrix groups.
- Starting point of MGRP over finite fields.

Irreducibility testing

Computational tasks (again)

- lacktriangle Decide if G is irreducible.
- ② If G is reducible, construct an invariant subspace.

The state of the art

- Irreducibility of matrix groups over finite fields can be tested using the MEAT-AXE algorithm. (Parker 1984, Holt & Rees 1994, ...)
- \bullet Irreducibility of finite matrix groups over the rationals can be tested effectively (Nebe & Steel 2009). Implemented in $\rm M_{AGMA}.$

Computing with nilpotent matrix groups

- Nilpotent matrix groups have been studied extensively (Suprunenko).
- They have been shown to be well-suited for computations.
- Nilpotency and finiteness can be tested (Detinko & Flannery 2008).
- In (Detinko & Flannery 2006), an algorithm which simultaneously tests irreducibility and primitivity of nilpotent matrix groups over finite fields was developed.

This talk

Let K be a number field. We describe an algorithm for deciding irreducibility of f.g. nilpotent matrix groups over K. In the case of finite nilpotent groups, we obtain a fully constructive algorithm. Time permitting, we also consider primitivity testing of finite nilpotent groups.

Matrix groups and algebras

Definition

Let $G \leq \operatorname{GL}_d(K)$.

- The enveloping algebra K[G] of G is the subalgebra of $\mathrm{M}_d(K)$ generated by G.
- If K[G] is semisimple, then G is completely reducible.
- If K[G] is simple, then G is homogeneous.

Fact

G irreducible $\Rightarrow G$ homogeneous $\Rightarrow G$ completely reducible.

Fact (Detinko & Flannery 2008)

If G is f.g. nilpotent, then we can either prove that G is completely reducible or we can construct a proper K[G]-submodule.

The strategy

Let $G \leq GL_d(K)$ be f.g., nilpotent, and completely reducible.

Goal: decide irreducibility of G.

We proceed as follows:

- The case that G is abelian is easily treated.
- Find an abelian normal subgroup $A \triangleleft G$ which is either inhomogeneous or homogeneous and maximal (i.e. $A = C_G(A)$).
- ② If A is inhomogeneous, then we can either prove reducibility of G or we reduce irreducibility testing to a problem in smaller dimension.
- ullet If A is homogeneous and maximal, then we can use computational Galois cohomology to decide irreducibility of G.

Step 1: constructing abelian normal subgroups

Let $G \leq \operatorname{GL}_d(K)$ be finitely generated, nilpotent and completely reducible.

Using congruence homomorphisms

We can find a homomorphism $G \xrightarrow{\pi} H$ onto a finite group H with the following property: a subgroup $A \leqslant G$ is abelian iff A^{π} is abelian.

Explicitly:

- Let R be the ring of integers of K.
- Choose an odd unramified prime $\mathfrak{p} \triangleleft R$ such that $G \leqslant \operatorname{GL}_d(R_{\mathfrak{p}})$.
- Take π to be the natural map $G \to G \mod \mathfrak{p} \leqslant \operatorname{GL}_d(R/\mathfrak{p})$.
- ullet By a theorem of Suprunenko and basic ANT, $\operatorname{Ker}(\pi)$ is torsion-free.
- ullet Another result of Suprunenko implies that [G,G] is finite.
- Hence, if A^{π} is abelian, then $[A,A] \leq \operatorname{Ker}(\pi) \cap [G,G] = 1$.

Step 1: constructing abelian normal subgroups

Goal: find an abelian $A \triangleleft G$ which is inhomgs or homgs and maximal.

Fact

A completely reducible abelian $A \leqslant \operatorname{GL}_d(K)$ is homg iff K[A] is a field.

Fact (Dixon; Eberly)

For a completely reducible abelian $A \leqslant \operatorname{GL}_d(K)$, "most" elements $x \in K[A]$ satisfy K[A] = K[x].

Let $G \xrightarrow{\pi} H$ be as on the previous slide. Using a presentation of H we find generators of $\mathrm{Ker}(\pi)$; note that $\mathrm{Ker}(\pi) \leqslant \mathrm{Z}(G)$.

- Let $B \triangleleft H$ be abelian.
- ② If $B^{\pi^{-1}}$ is inhomogeneous, then stop.
- $oldsymbol{3}$ If B is maximal abelian, then stop.
- Enlarge $B < C_H(B)$ and go to •.

Step 2: reduction

Goal: make use of an inhomogeneous normal subgroup.

Theorem (Clifford 1937 + Detinko & Flannery 2006)

Let $G \leq \operatorname{GL}_d(K)$ be completely reducible, $N \triangleleft G$, and $K^d = U_1 \oplus \cdots \oplus U_r$ be the homgs decompn over K[N]. Then G is irreducible if and only if

- **1** G acts transitively on $\mathcal{U} = \{U_1, \dots, U_r\}$, and
- ② $\operatorname{Stab}_G(U_1)$ acts irreducibly on U_1 .
 - ullet $\mathcal U$ can be easily computed if N is abelian.
 - \bullet We may test transitivity of G on ${\mathcal U}$ using perm. group algorithms.
 - ullet The action of $\operatorname{Stab}_G(U_1)$ on U_1 can be computed using linear algebra.

Reduction

If N is inhomogeneous (i.e. $|\mathcal{U}|>1$), then we can either prove reducibility of G or we continue irreducibility testing in smaller dimension.

A reminder: crossed products

Let L/Z be a finite Galois extension of number fields, $\Gamma=\mathrm{Gal}(L/Z)$, and $\phi\in\mathrm{Z}^2(\Gamma,L^\times)$. Define

$$L \star_{\phi} \Gamma = \bigoplus_{\sigma \in \Gamma} u_{\sigma} L$$

with multiplication $au_{\sigma}=u_{\sigma}a^{\sigma}$ $(a\in L,\sigma\in\Gamma)$ and $u_{\sigma}u_{\tau}=u_{\sigma\tau}\cdot(\sigma,\tau)\phi$. The algebra $L\star_{\phi}\Gamma$ is the **crossed product** of L by Γ determined by ϕ .

Facts

- $\mathcal{A} = L \star_{\phi} \Gamma$ is a central simple Z-algebra.
- index(A) = L-dimension of the irreducible A-module.
- $index(A) = order of [\phi] \in H^2(\Gamma, L^{\times})$. (Brauer-Hasse-Noether 1932)
- ullet The order of $[\phi]$ can be determined algorithmically. (Fieker 2009)

Step 3: cohomology

Goal: decide irreducibility of G if $A \triangleleft G$ is homogeneous and max. abelian.

Proposition

Let $G \leqslant \operatorname{GL}_d(K)$ be nilpotent and let $A \triangleleft G$ be max. abelian and homgs.

- Let L=K[A]. Then G/A acts faithfully on L by conjugation.
- 2 Let $Z = L^{G/A}$. Then $K[G] \cong_Z L \star G/A$ in the natural way.

We may thus decide irreducibility of G as follows:

- $\bullet \text{ Construct } \phi \in \mathbf{Z}^2(G/A,A) \text{ corr. to } 1 \to A \to G \to G/A \to 1.$
- ② Compute $m = \text{order of } [\phi] \in \mathrm{H}^2(G/A, L^{\times}).$

Summary (deciding irreducibility)

Deciding irreducibility of a f.g. nilpotent group $G \leqslant \operatorname{GL}_d(K)$ (main steps):

- $\textbf{ ① Construct an abelian normal subgroup } A \triangleleft G \text{ which is inhomogeneous} \\ \text{or maximal abelian and homogeneous}.$
- ② If A is inhomogeneous, then either prove reducibility or reduce to smaller dimension and start again.
- $\ensuremath{\mathfrak{g}}$ If A is maximal abelian and homogeneous, then compute the index of K[G] and read off irreducibility of G.

Remark

We don't (in general) obtain a submodule in case 3.

Example: cyclic algebras

Suppose that K contains a primitive mth root of unity ζ_m . Let $\lambda, \nu \in K^{\times}$ and suppose that $X^m - \nu$ is irreducible over K. Let $\beta = \sqrt[m]{\nu}$ and define

$$G = \left\langle \underbrace{\begin{bmatrix} \beta & & & & \\ & \beta \cdot \zeta_m & & \\ & & \ddots & \\ & & & \beta \cdot \zeta_m^{m-1} \end{bmatrix}}_{\mathcal{H}}, \ \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ \lambda & & & \end{bmatrix} \right\rangle.$$

Note that G has class 2. Regard G as a matrix group over K of degree m^2 . Then $A=\langle \lambda,u,\zeta_m\rangle$ is a homgs maximal abelian normal subgroup of G with $G/A\cong \mathbf{C}_m$. It is well-known that K[G] is a **cyclic algebra**.

Fact

Let m be a prime. Then G is reducible iff $N_{K(\beta)/K}(x) = \lambda$ has a soln.

The finite case

- We obtain a fully constructive algorithm for irreducibility testing of finite nilpotent matrix groups.
- We can handle a considerably larger class of fields of char. zero.
 - ▶ In theory: any field of characteristic zero with algorithms for polynomial factorisation and for solving $x^2 + y^2 = -1$.
 - ▶ In practice: number fields and rational function fields over these.
- \bullet The algorithm is quite practical. An implementation is available in $\rm MAGMA~V2.17$ and as a stand-alone package.
- Primitivity can be tested too.

The strategy (finite case)

Fact

If $A \leqslant \operatorname{GL}_d(K)$ is finite non-cyclic abelian, then A is inhomogeneous.

Strategy (based on (Detinko & Flannery 2006) for finite fields)

Let $G \leq GL_d(K)$ be finite nilpotent.

- lacksquare Find a non-cyclic abelian normal subgp of G or prove that none exists.
- 2 In the first case, reduce.
- $oldsymbol{\circ}$ In the second case, test irreducibility of G directly.

Theorem (Roquette 1958, ...)

Let G be finite nilpotent. All abelian normal subgroups of G are cyclic iff

- G_2 is cyclic or isomorphic to Q_8 or to D_{2^k} , SD_{2^k} , Q_{2^k} for $k \geqslant 4$, and
- $G_{2'}$ is cyclic.

Finding non-cyclic abelian normal subgroups

We can find $A \triangleleft G$ which is non-cyclic or cyclic and max. abelian.

Lemma

Let G be a finite nilpotent group such that [G,G] is cyclic. Define $H=\mathrm{C}_G([G,G])$.

- If $H_{2'}$ is cyclic and H_2 is cyclic or $H_2 \cong \mathbb{Q}_8$, then all abelian normal subgroup of G are cyclic.
- ② Suppose that $H_p \not\cong \mathbb{Q}_8$ is non-abelian. Then $\langle \mathbb{Z}(H_p), h \rangle$ is a non-cyclic abelian normal subgroup of G for some $h \in H_p$.

Proof.

- 1 Follows from (Berger, Kovács, Newman 1980).
- ② Note that ${\rm class}(H_p)=2.$ If $\langle {\rm Z}(H_p),h\rangle$ were cyclic for all $h\in H_p$, then H_p would contain a unique subgroup of order p. But then H_p would be cyclic or generalised quaternion, which is impossible.

Enter $x^2 + y^2 = -1$

Let all abelian normal subgps of a non-abelian $G \leqslant \operatorname{GL}_d(K)$ be cyclic.

- Let $A \triangleleft G$ be cyclic of index 2. We may assume that A is homgs.
- Let $Z = \mathbb{Z}(K[G]) = K[A]^G$. We find that

$$K[G] \cong_Z \left(\frac{-1, \pm 1}{Z}\right) = Z(\sqrt{-1}) \star C_2.$$

Lemma

- If G_2 is (semi)dihedral, then G is irreducible iff d=2|Z:K|.
- 2 Let G_2 be quaternion. If $x^2 + y^2 = -1$ is soluble in Z, then G is irreducible iff d = 2|Z:K|. Otherwise, G is irreducible iff d = 4|Z:K|.

Enter $x^2 + y^2 = -1$

Example

We have $K[G] \cong \left(\frac{-1,-1}{K}\right)$, where

$$G = \left\langle \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ -1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & -1 \\ \cdot & \cdot & 1 & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \\ -1 & \cdot & \cdot & \cdot \\ \cdot & -1 & \cdot & \cdot \end{bmatrix} \right\rangle \leqslant \operatorname{GL}_{4}(K).$$

Hence, G is reducible iff $x^2+y^2=-1$ is soluble in K. If this is the case, then finding a proper K[G]-submodule is equivalent to finding a solution of $x^2+y^2=-1$.

Primitivity testing

Definition

Let $G \leqslant \operatorname{GL}_d(K)$ be irreducible. If there exists a non-trivial decomposition

$$K^d = U_1 \oplus \cdots \oplus U_r$$

permuted by G, then G is **imprimitive**. Otherwise, G is **primitive**. A subspace U_i is a **block** and a subgp $\operatorname{Stab}_G(U_i)$ is **block stabiliser** for G.

Computational tasks

- lacksquare Decide if G is primitive.
- $oldsymbol{0}$ If G is imprimitive, construct a system of imprimitivity.

Elementary facts

Facts

Let $G \leq \operatorname{GL}_d(K)$ be irreducible.

- ullet H < G is a block stabiliser iff there is an irreducible K[H]-submodule $U < K^d$ with d = |G:H||U:K|.
- ullet G is imprimitive iff some max. subgp of G is a block stabiliser.
- If H < G has index 2, then H is a block stabiliser iff H is reducible.
- ullet If G is primitive, then all normal subgroups of G are homogeneous.

Maximal subgroups

Let $G \leq GL_d(K)$ be finite, nilpotent, and irreducible.

- If $A \triangleleft G$ is non-cyclic abelian G, then G is imprimitive.
- We obtain a reduction to the case that all abelian $A \triangleleft G$ are cyclic.
- The abelian case is easily treated (again).
- Let $A \triangleleft G$ be cyclic of index 2. We may assume that A is irreducible.
- ullet It suffices to test if any of the max. subgps of G is a block stabiliser.
- The interesting ones correspond to the prime divisors of |G|.

Lemma

$$|G| = \mathcal{O}(d^{1+\varepsilon})$$
 for $\varepsilon > 0$.

Maximal subgroups

Proposition

- Let H < G have prime index p (+ conditions for p = 2, e.g. $A \ne H$). Suppose that one of the following conditions is satisfied:
 - G₂ is (semi)dihedral,
 - $|G_2|\geqslant 32$, or
 - p is odd.

Then H is a block stabiliser iff $|K[A]:K[A^p]|=p$.

- ② If $G_2 \cong Q_8$, then subgroups of index 2 of G are irreducible.
- 3 Suppose that $Q_8 \times C_m \cong H < G \cong Q_{16} \times C_m$ for odd m. Then H is a block stabiliser iff $|K[A]:K[A^2]|=2$ and the following condition is satisfied: $\operatorname{ord}(2 \bmod m)|K_{\mathfrak{p}}:\mathbf{Q}_2|$ is even for all $\mathfrak{p} \mid 2$.

We can thus test primitivity of ${\cal G}$ by looping over its maximal subgroups and testing the conditions in the proposition.