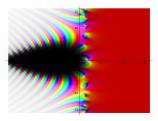
Growth in Nilpotent Groups

Tobias Rossmann

University of Auckland*

January 2018



^{*}Supported by the Alexander von Humboldt Foundation

Some group-theoretic counting problems

Given a group *G*, enumerate . . .

- elements of *G* of given length w.r.t. some generating set
- (normal) subgroups of *G* according to their indices
- representations (e.g. irreducible, complex) of *G* according to their dimensions
- submodules of a **Z***G*-module according to their indices
- conjugacy classes of G/N for suitable $N \triangleleft G$
- ...

Some group-theoretic counting problems

Given a group *G*, enumerate . . .

- elements of *G* of given length w.r.t. some generating set
- (normal) subgroups of *G* according to their indices
- representations (e.g. irreducible, complex) of *G* according to their dimensions
- submodules of a **Z***G*-module according to their indices
- conjugacy classes of G/N for suitable $N \triangleleft G$
- ...

Definition

Let *G* be a finitely generated group. Define

$$a_n(G) =$$
 (number of subgroups $H \leq G$ with $|G:H| = n < \infty$).

Theorem (M. Hall '49)

Let $F_r = \text{free group of rank } r \geqslant 1$. Then $a_1(F_r) = 1$ and

$$a_n(F_r) = n(n!)^{r-1} - \sum_{i=1}^{n-1} (n-i)!^{r-1} a_i(F_r).$$

Example

$$a_n(\mathbf{Z}) = 1$$
 for all $n \ge 1$.

Hence,
$$a_1(\mathbf{Z}) + \cdots + a_n(\mathbf{Z}) = n$$
.

Example

$$a_n(\mathbf{Z}^2) = \sigma(n) = \sum d.$$

Proof.

$a_n(\mathbf{Z}^2) = \text{number of } \begin{bmatrix} c & a \\ 0 & d \end{bmatrix} \text{ for } cd = n \text{ and } a = 0, \dots, d-1.$

Hence, $a_1(\mathbf{Z}^2) + \cdots + a_n(\mathbf{Z}^2) \sim \frac{\pi^2}{12} n^2$ as $n \to \infty$.

Definition

A group *G* has **polynomial subgroup growth** (PSG) if

$$a_1(G) + \cdots + a_n(G) = \mathcal{O}(n^{\alpha})$$

for some $\alpha > 0$.

PSG Theorem (Lubotzky, Mann, Segal '93)

A finitely generated residually finite group has PSG iff it is virtually soluble of finite rank.

Other types of groups

- Profinite PSG Theorem: Segal, Shalev '97
- A pro-*p* gp has PSG iff it is *p*-adic analytic (Lubotzky, Mann '91).

Reminder: nilpotent groups

- Finite *p*-groups are nilpotent.
- Finite direct products of nilpotent groups are nilpotent.
- A finite *G* is nilpotent iff $G = \prod_{p} G_{p}$, where each G_{p} is a *p*-group.
- The elements of finite order in a nilpotent group form a subgroup.
- A f.g. torsion-free group is nilpotent iff it embeds into some

$$\mathbf{U}_d(\mathbf{Z}) = \begin{bmatrix} 1 & \mathbf{Z} & \cdots & \mathbf{Z} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{Z} \\ 0 & \cdots & 0 & 1 \end{bmatrix} \leqslant \mathrm{GL}_d(\mathbf{Z}).$$

The **subgroup zeta function** of *G* is

Definition (Grunewald, Segal, Smith '88)

$$\zeta_G(s) = \sum_{n=1}^{\infty} a_n(G) n^{-s}.$$

Remark

The infimum of all such α is the **abscissa of convergence** α_G of $\zeta_G(s)$.

 $\zeta_G(s)$ converges for $\text{Re}(s) > \alpha$ iff $a_1(G) + \cdots + a_n(G) = O(n^{\alpha})$.

Proposition (GSS'88)

Let G be a f.g. nilpotent group. Then:

- $\alpha_G \leq Hirsch \ length \ of \ G$.

• $\zeta_G(s) = \prod_p \zeta_{\hat{G}_p}(s)$.

 $(\hat{G}_p = pro-p \ completion \ of \ G)$

Example ("classical result"; see GSS'88)

$$\begin{split} \zeta_{\mathbf{Z}^d}(s) &= \zeta(s)\zeta(s-1)\cdots\zeta(s-d+1) \\ &= \prod_{n} \frac{1}{(1-p^{-s})(1-p^{1-s})\cdots(1-p^{d-1-s})}, \end{split}$$

where $\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{n} \frac{1}{1-p^{-s}} = \text{Riemann zeta function.}$

Proof.

As above: $a_n(\mathbf{Z}^d) = \sum_{a_1 \cdots a_d = n} a_1^0 a_2^1 \cdots a_d^{d-1}$.

Hence, $a_{\bullet}(\mathbf{Z}^d) = \mathrm{id}^0 * \cdots * \mathrm{id}^{d-1}$ (convolution), where $\mathrm{id}^k = n \mapsto n^k$.

Consequence:
$$a_1(\mathbf{Z}^d) + \dots + a_n(\mathbf{Z}^d) \sim \frac{\zeta(2) \cdots \zeta(d)}{d} n^d$$
 (Euler ≈ 1735 : $\zeta(2) = \pi^2/6$).

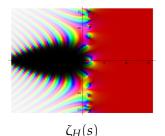
Subgroup zeta functions

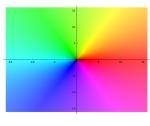
Example (GSS'88)

Let
$$H = \begin{bmatrix} 1 & \mathbf{Z} & \mathbf{Z} \\ 0 & 1 & \mathbf{Z} \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{U}_3(\mathbf{Z})$$
 = discrete Heisenberg group. Then

$$\zeta_H(s) = \frac{\zeta(s)\zeta(s-1)\zeta(2s-2)\zeta(2s-3)}{\zeta(3s-3)}$$

and
$$a_1(H) + \cdots + a_n(H) \sim \frac{\zeta(2)^2}{2\zeta(3)} \cdot n^2 \log n$$
.





S

Let *L* be an *R*-algebra. The **subalgebra zeta function** of *L* is

Let *R* be a "suitable" ring, e.g. **Z** or $\mathbf{Z}_p = \varprojlim \mathbf{Z}/p^n$ (*p* prime).

$$\zeta_L(s) = \sum_{n=1}^{\infty} a_n(L) n^{-s},$$

where $a_n(L) = \text{no. of subalgebras of index } n \text{ of } L.$

Definition (L. Solomon '77)

Definition (GSS'88)

Let M be an R-module and let $\Omega \subset \operatorname{End}(M)$. The submodule zeta **function** of Ω acting on M is

$$\zeta_{\Omega \curvearrowright M}(s) = \sum_{n=1}^{\infty} a_n(\Omega \curvearrowright M) n^{-s},$$

where $a_n(\Omega \curvearrowright M) = \text{no. of } \Omega\text{-invariant submodules of index } n \text{ of } M.$

Theorem (Malcev '49)

f.g. nilpotent groups/commensurability = <math>f.d. nilpotent Lie \mathbf{Q} -algebras/iso.

Theorem (GSS'88)

Let G be f.g. nilpotent. There exists an additively f.g. Lie ring L s.t. for $p\gg 0$,

$$\zeta_{\hat{G}_p}(s) = \zeta_{L \otimes \mathbf{Z}_p}(s).$$

Theorem (GSS'88)

Let L be an additively f.g. free **Z**-algebra. Then $\zeta_L(s) = \prod_p \zeta_{L \otimes \mathbf{Z}_p}(s)$ and $\zeta_{L \otimes \mathbf{Z}_p}(s) \in \mathbf{Q}(p^{-s})$ for each p.

Theorem (du Sautoy, Grunewald '00)

• For $p \gg 0$, $\zeta_{L \otimes \mathbf{Z}_p}(s)$ depends uniformly on p: there are finitely many varieties V_i/\mathbf{Q} and $W_i \in \mathbf{Q}(X,Y)$ s.t. for $p \gg 0$,

$$\zeta_{L\otimes \mathbf{Z}_p}(s) = \sum_i \# \bar{V}_i(\mathbf{F}_p) \cdot W_i(p, p^{-s}).$$

- $\alpha_L := abscissa$ of convergence of $\zeta_L(s)$ is rational.
- $\zeta_L(s)$ admits meromorphic cont. to $\text{Re}(s) > \alpha_L \delta$ for some $\delta > 0$.
- $a_1(L) + \cdots + a_n(L) \sim c \cdot n^{\alpha_L} (\log n)^{\beta_L 1}$.

Relative: enumerating solutions of congruences

Definition

Igusa's local zeta function associated with $f \in \mathbf{Z}[X_1, \dots, X_n]$ is

$$\mathsf{Z}_{f,p}(s) = \int_{\mathsf{Z}_p^n} |f(\mathbf{x})|_p^s \; \mathrm{d}\mu(\mathbf{x}).$$

Fact

$$\frac{1 - p^{-s} \mathbf{Z}_{f,p}(s)}{1 - p^{-s}} = \sum_{k=0}^{\infty} \# \left\{ \bar{\mathbf{x}} \in (\mathbf{Z}/p^k)^n : f(\bar{\mathbf{x}}) = 0 \right\} \cdot p^{-k(s+n)}.$$

- Rationality: Igusa '75, Denef '84
- Uniform formulae: Denef '87
- Toric formulae: Denef et al. '92–01, Veys, Zúñiga-Galindo '08, ...

Example: \mathfrak{sl}_2 and \mathfrak{gl}_2

Recall: $\mathfrak{gl}_d = d \times d$ matrices with Lie bracket [A, B] = AB - BA \mathfrak{sl}_d = traceless matrices

Theorem (Ilani '99; du Sautoy '00; White '00; du Sautoy & Taylor '02)

Let
$$p \neq 2$$
. Then $\zeta_{\mathfrak{sl}_2(\mathbf{Z}_p)}(s) = W(p, p^{-s})$, where
$$W(X, Y) = \frac{1 - XY^3}{(1 - X^2Y^2)(1 - XY^2)(1 - XY)(1 - Y)}.$$

Example: \mathfrak{sl}_2 and \mathfrak{gl}_2

Recall: $\mathfrak{gl}_d = d \times d$ matrices with Lie bracket [A, B] = AB - BA $\mathfrak{sl}_d = \text{traceless matrices}$

Theorem (Ilani '99; du Sautoy '00; White '00; du Sautoy & Taylor '02)

Let $p \neq 2$. Then $\zeta_{\mathfrak{sl}_2(\mathbf{Z}_p)}(s) = W(p, p^{-s})$, where

$$W(X,Y) = \frac{1 - XY^3}{(1 - X^2Y^2)(1 - XY^2)(1 - XY)(1 - Y)}.$$

Theorem (R. '17)

Let $p \gg 0$. Then $\zeta_{\mathfrak{gl}_2(\mathbf{Z}_n)}(s) = W(p, p^{-s})$, where

$$W(X,Y) = (-X^{8}Y^{10} - X^{8}Y^{9} - X^{7}Y^{9} - 2X^{7}Y^{8} + X^{7}Y^{7} - X^{6}Y^{8} - X^{6}Y^{7} + 2X^{6}Y^{6} - 2X^{5}Y^{7} + 2X^{5}Y^{5} - 3X^{4}Y^{6} + 3X^{4}Y^{4} - 2X^{3}Y^{5} + 2X^{3}Y^{3} - 2X^{2}Y^{4} + X^{2}Y^{3} + X^{2}Y^{2} - XY^{3} + 2XY^{2} + XY + Y + 1)/((1 - X^{7}Y^{6})(1 - X^{3}Y^{3})(1 - X^{2}Y^{2})^{2}(1 - Y)).$$

Example: \mathfrak{sl}_2 and \mathfrak{gl}_2

Recall: $\mathfrak{gl}_d = d \times d$ matrices with Lie bracket [A, B] = AB - BA $\mathfrak{sl}_d = \text{traceless matrices}$

Consistent with known facts:

•
$$W(X^{-1}, Y^{-1}) = X^{6}Y^{4} \cdot W(X, Y)$$
 (Voll '10)

•
$$W(1,Y) = (1-Y^3)/((1-Y)^3(1-Y^2)^2)$$
 (Evseev '09)

Note: $\mathfrak{gl}_2(\mathbf{Q}) \approx \mathfrak{sl}_2(\mathbf{Q}) \oplus \mathbf{Q}$

Theorem (R. '17)

Let $p \gg 0$. Then $\zeta_{\mathfrak{gl}_2(\mathbf{Z}_p)}(s) = W(p, p^{-s})$, where

$$W(X,Y) = \left(-X^8Y^{10} - X^8Y^9 - X^7Y^9 - 2X^7Y^8 + X^7Y^7 - X^6Y^8 - X^6Y^7 + 2X^6Y^6 - 2X^5Y^7 + 2X^5Y^5 - 3X^4Y^6 + 3X^4Y^4 - 2X^3Y^5 + 2X^3Y^3 - 2X^2Y^4 + X^2Y^3 + X^2Y^2 - XY^3 + 2XY^2 + XY + Y + 1\right) / \left((1 - X^7Y^6)(1 - X^3Y^3)(1 - X^2Y^2)^2(1 - Y)\right).$$

Goal

Given $L \approx \mathbf{Z}^d$, compute $\zeta_{L \otimes \mathbf{Z}_p}(s) \in \mathbf{Q}(p^{-s})$ for all $p \gg 0$ simultaneously.

- For many examples of interest: $\exists W(X,Y)$ such that $\zeta_{L\otimes \mathbb{Z}_p}(s) = W(p,p^{-s})$ for $p\gg 0$. \rightsquigarrow Find W(X,Y).
- Previous computations (ad hoc, partially manual): Taylor '01, Woodward '05, ...
- Here: fully automated but restricted by genericity assumptions.

- A subgroup of f.i. in \mathbb{Z}^d is the row span of a $d \times d$ matrix.
- \bullet Subalgebras \leftrightarrow polynomial divisibility conditions in the entries.
- Overcounting for $\zeta_{L\otimes \mathbb{Z}_p}(s)$: *p*-adic integration (GSS'88).
- Attempt to construct explicit V_i and W_i with

$$\zeta_{L\otimes \mathbf{Z}_p}(s) = \sum_i \# \bar{V}_i(\mathbf{F}_p) \cdot W_i(p, p^{-s}).$$

dSG'00: impractical due to resolution of singularities R.: "toric resolutions" (Khovanskii et al., '70s) and "reduction"

- Attempt to compute each $\#\bar{V}_i(\mathbf{F}_p)$ as a polynomial in p for $p \gg 0$.
- Compute each W_i as a sum of rational functions.

 ∼ algorithms of Barvinok et al.
- Final summation.

Theorem (R. '17)

$$\begin{split} \zeta_{\mathrm{U}_2(\mathbf{Z}) \curvearrowright \mathbf{Z}^2}(s) &= \zeta(s)\zeta(2s-1) \\ \zeta_{\mathrm{U}_3(\mathbf{Z}) \curvearrowright \mathbf{Z}^3}(s) &= \zeta(s)\zeta(2s-1)\zeta(3s-1)\zeta(4s-2)/\zeta(4s-1) \\ \zeta_{\mathrm{U}_4(\mathbf{Z}) \curvearrowright \mathbf{Z}^4}(s) &= \zeta(s)\zeta(2s-1)\zeta(3s-1)\zeta(4s-1)\zeta(4s-2)\zeta(5s-2) \\ &\qquad \times \zeta(6s-2)\zeta(7s-3)\zeta(8s-4) \times \prod_p F_4(p,p^{-s}), \ where \\ F_4(X,Y) &= -X^{10}Y^{30} + X^9Y^{26} + X^9Y^{25} + X^9Y^{24} - X^9Y^{23} + 2X^8Y^{23} \\ &\qquad -X^8Y^{22} + 2X^7Y^{22} - 2X^7Y^{21} - 2X^7Y^{20} + X^6Y^{21} - 2X^7Y^{19} \\ &\qquad + X^6Y^{20} - X^6Y^{18} - X^6Y^{17} - X^5Y^{18} - X^5Y^{17} + 2X^6Y^{15} \\ &\qquad - X^5Y^{16} + X^5Y^{14} - 2X^4Y^{15} + X^5Y^{13} + X^5Y^{12} + X^4Y^{13} \\ &\qquad + X^4Y^{12} - X^4Y^{10} + 2X^3Y^{11} - X^4Y^9 + 2X^3Y^{10} + 2X^3Y^9 \\ &\qquad - 2X^3Y^8 + X^2Y^8 - 2X^2Y^7 + XY^7 - XY^6 - XY^5 - XY^4 + 1 \\ \zeta_{\mathrm{U}_5(\mathbf{Z}) \curvearrowright \mathbf{Z}^5}(s) &= \mathrm{BIG} \ \mathrm{FORMULA} \ (\approx 2.5 \ pages) \end{split}$$

Observation: for $d \le 5$, the abscissa of convergence of $\zeta_{\mathbf{U}_d(\mathbf{Z}) \curvearrowright \mathbf{Z}^d}(s)$ is 1. Example:

$$\begin{split} \zeta_{\mathrm{U}_2(\mathbf{Z}) \frown \mathbf{Z}^2}(s) &= \zeta(s)\zeta(2s-1) \\ &1 & 1 \\ \\ \zeta_{\mathrm{U}_3(\mathbf{Z}) \frown \mathbf{Z}^3}(s) &= \zeta(s)\zeta(2s-1)\zeta(3s-1)\zeta(4s-2)/\zeta(4s-1) \\ &1 & 1 & 2/3 & 3/4 & 1/2 \end{split}$$

Remainder of talk: prove that $\alpha_{\mathbf{U}_d(\mathbf{Z}) \frown \mathbf{Z}^d} = 1$ for $d \geqslant 1$ without computing $\zeta_{\mathbf{U}_d(\mathbf{Z}) \frown \mathbf{Z}^d}(s)$.

Submodules invariant under a matrix

- f_1, \dots, f_r : monic irreducible divisors of the min. poly. of A over k
- $\zeta_k(s)$ = Dedekind zeta function of k = ideal zeta function of $\mathfrak o$

• $A \in M_d(\mathfrak{o})$, where $\mathfrak{o} = \text{ring of integers of number field } k$

• $k_i = k[X]/f_i$

Theorem (R. '17)

There exist a finite set S of primes and $W_p(X) \in \mathbf{Q}(X)$ *for* $p \in S$ *such that*

$$\zeta_{A \curvearrowright o^d}(s) = \prod_{p \in S} W_p(p^{-s}) \cdot \prod_{i=1}^r \prod_{j=1}^{\ell_i} \zeta_{k_i}(a_{ij}s - j + 1),$$

where the ℓ_i and a_{ij} are determined by the rational canonical form of A over k.

Consequences:

- $\zeta_{A \cap g^d}(s)$ admits meromorphic continuation to **C**
- abscissa of convergence $\in N$

Theorem (R. '17)

There exist a finite set S of primes and $W_p(X) \in \mathbf{Q}(X)$ for $p \in S$ such that

$$\zeta_{A \frown \mathfrak{o}^d}(s) = \prod_{p \in S} W_p(p^{-s}) \cdot \prod_{i=1}^r \prod_{j=1}^{\ell_i} \zeta_{k_i}(a_{ij}s - j + 1),$$
 where the ℓ_i and a_{ij} are determined by the rational canonical form of A over k .

Example

- $\zeta_{0 \frown q^d}(s) = \zeta_k(s)\zeta_k(s-1)\cdots\zeta_k(s-d+1)$ the "classical" formula
 - Let $A = \text{companion matrix of a monic irreducible } f \in \mathbf{Z}[X]$. Then $\zeta_{A \curvearrowright \mathbf{Z}^d}(s) = \zeta_{\mathbf{O}[X]/f}(s) \cdot \text{(exceptional factor)}.$
 - Let $N_d = \begin{bmatrix} \ddots & \ddots & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \end{bmatrix} = \text{companion matrix of } X^d$.

Then $\zeta_{N_d \sim \mathbb{Z}^d}(s) = \zeta(s)\zeta(2s-1)\cdots\zeta(ds-d+1)$.

Theorem (R. '17)

There exist a finite set S of primes and $W_p(X) \in \mathbf{Q}(X)$ *for* $p \in S$ *such that*

$$\zeta_{A \curvearrowright \mathfrak{o}^d}(s) = \prod_{p \in S} W_p(p^{-s}) \cdot \prod_{i=1}^r \prod_{j=1}^{\mathfrak{e}_i} \zeta_{k_i}(a_{ij}s - j + 1),$$

where the ℓ_i and a_{ij} are determined by the rational canonical form of A over k.

Sketch of proof:

- CRT: reduce to primary min. poly. f^e of A
- Jordan normal form: A = scalar + nilpotent over k[X]/f \sim reduce to nilpotent A over extn of k
- Conjugate nilpotent *A* into a "dual normal form" (over *k*)
- Express Euler factors in terms of *p*-adic integrals (GSS'88). Recursively compute these.

Corollary (R. '17)

- **1** $U_d(\mathbf{Z})$ has linear submodule growth acting on \mathbf{Z}^d for each $d \ge 1$.
- **2** Let G be a finitely generated torsion-free nilpotent group of maximal class. Then G has quadratic normal subgroup growth.

Proof of 2.

- " $\alpha_G^{\triangleleft} \geqslant 2$ ": G maps onto \mathbf{Z}^2 and $\zeta_{\mathbf{Z}^2}(s) = \zeta(s)\zeta(s-1)$ so $\alpha_{\mathbf{Z}^2} = 2$. " $\alpha_G^{\triangleleft} \leqslant 2$ ": Let $\mathfrak{g} = \text{Lie}$ algebra of G.
 - \exists basis $(x, y_1, ..., y_m)$ with $[x, y_i] = y_{i+1}$, where $y_{m+1} := 0$
 - normal subgps of $G \leftrightarrow ideals$ of $\mathfrak{g} \subset ad(x)$ -submodules
 - Thm $\Longrightarrow \alpha_{ad(x) \curvearrowright \mathfrak{g}} = 2$

Ш

Open: any example of $\zeta_G^{\triangleleft}(s)$ (or $\zeta_{\mathbf{U}_d(\mathbf{Z}) \curvearrowright \mathbf{Z}^d}(s)$) for $h(G) = d \geqslant 6$

The End