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in terms of a single formula, a statement made precise using what we call local maps
of Denef type. We show that assuming the existence of such formulae, the behaviour
of local zeta functions under variation of the prime in a set of density 1 in fact
completely determines these functions for almost all primes and, moreover, it also
determines their behaviour under local base extensions. We discuss applications to
topological zeta functions, functional equations, and questions of uniformity.
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1 Introduction
For a finitely generated nilpotent group G and a prime p, let ζ ĩrr

G,p(s) be the Dirichlet
series enumerating continuous irreducible finite-dimensional complex representations of
the pro-p completion Ĝp of G, counted up to equivalence and tensoring with continuous
1-dimensional representations. In this article, we prove statements of the following form.

Theorem. Let G and H be finitely generated nilpotent groups such that ζ ĩrr
G,p(s) = ζ ĩrr

H,p(s)
for all primes p in a set of density 1. Then ζ ĩrr

G,p(s) = ζ ĩrr
H,p(s) for almost all primes p.
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Much more can be said if we also take into account local base extensions. As explained
in [19], there exists a unipotent group scheme G over Z such that Ĝp = G(Zp) for almost
all p, where Zp denotes the p-adic integers; let H be a unipotent group scheme over Z
associated with H in the same way. The preceding theorem can be sharpened as follows.

Theorem. Suppose that ζ ĩrr
G(Zp)(s) = ζ ĩrr

H(Zp)(s) for all primes p in a set of density 1.
Then ζ ĩrr

G(OK)(s) = ζ ĩrr
H(OK)(s) for almost all primes p and all finite extensions K of the

field Qp of p-adic numbers, where OK denotes the valuation ring of K.

Explicit formulae in the spirit of Denef’s work (see [2]) have been obtained for zeta
functions such as ζ ĩrr

G(OK)(s) (see [19]). These formulae are well-behaved under variation
of the prime p and under local base extensions K/Qp. More precisely, the family of all
such functions ζ ĩrr

G(OK)(s) gives rise to what we call a local map of Denef type. Informally,
a local map of Denef type Z uses an algebro-geometric template to assign to each prime p
(with possibly finitely many exceptions) and number f > 1 a rational function Z(p, f)
corresponding to the unramified extension of Qp of degree f ; see §2.1 for a precise
definition. In the cases of interest to us, Z(p, f) will be a local zeta function derived from
some global object (e.g. a group scheme G as above). Our main result, Theorem 2.3, shows
that up to a suitable notion of equivalence, Z is determined by the rational functions
Z(p, 1) as p ranges over the elements of a set of primes of density 1. We prove this by
interpreting Z in terms of Galois representations and by invoking Chebotarev’s density
theorem. Applications of these techniques are given in [17] which provides the main
inspiration for the present article. In particular, Theorem 2.3 draws upon the following.

Theorem ([17, Thm 1.3]). Let V and W be schemes of finite type over Z. Suppose that
#V (Fp) = #W (Fp) for all p in a set of primes of density 1. Then #V (Fpf ) = #W (Fpf )
for almost all primes p and all f ∈ N.

After proving Theorem 2.3, in §3, we consider consequences to topological zeta functions.
In particular, we give a rigorous justification for the process of deriving topological zeta
functions from uniform p-adic ones. In §4, we show that local functional equations under
“inversion of p” are independent of the formulae used to define them.
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Notation

We write N = {1, 2, . . . } and let “⊂” indicate not necessarily proper inclusion. Through-
out, k is a number field with ring of integers o. Let Vk be the set of non-Archimedean
places of k. Given v ∈ Vk, let kv be the v-adic completion of k and Kv be its residue field.
Let qv and pv denote the cardinality and characteristic of Kv, respectively. Let k̄v be an
algebraic closure of kv. For f > 1, let k(f)

v ⊂ k̄v be the unramified extension of degree
f of kv; we identify the residue field K

(f)
v of k(f)

v with the extension of degree f of Kv
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within the residue field of k̄v. Let OK denote the valuation ring of a non-Archimedean
local field K, let PK denote the maximal ideal of OK , and write qK = #(OK/PK). By
the density of a set of places or primes, we mean the Dirichlet density.

2 Stability under base extension for local maps of Denef type
This section contains the technical main result of this article: Theorem 2.3.

2.1 Local maps of Denef type
The following terminology is closely related to [13, §5.2]. Fix m ∈ N. A k-local map is
a map Z : (Vk \ SZ)×N→ Q(Y1, . . . , Ym), where SZ ⊂ Vk is finite. Local maps provide
a convenient formalism for studying families of local zeta functions: for v ∈ Vk \ SZ
and f ∈ N, let Ẑ(v, f) denote the meromorphic function Z(v, f)(q−fs1

v , . . . , q−fsm
v ) in

complex variables s1, . . . , sm. Let K be a non-Archimedean local field endowed with an
embedding k ⊂ K. We may regard K as an extension of kv for a unique v ∈ Vk. Let f
be the inertia degree of K/kv. Given a k-local map Z, if v 6∈ SZ, write ZK := Z(v, f) and
ẐK(s1, . . . , sm) := Ẑ(v, f).

We say that two k-local maps Z and Z′ are equivalent if they coincide on (Vk \S)×N
for some finite set S ⊃ SZ ∪ SZ′ . Let V be a separated o-scheme of finite type and let
W ∈ Q(X,Y1, . . . , Ym) be regular at (q, Y1, . . . , Ym) for each integer q > 1. Define

[V ·W ] : Vk ×N→ Q(Y1, . . . , Ym), (v, f) 7→ #V (K(f)
v ) ·W (qf

v , Y1, . . . , Ym).

We say that a k-local map is of Denef type if it is equivalent to a finite (pointwise) sum
of maps of the form [V ·W ]. (For a motivation of our terminology, see [2, §3].)

2.2 Main examples of local maps
We discuss the primary examples of k-local maps of Denef type of interest to us. These
local maps will be constructed from an o-form of a k-object and only be defined up to
equivalence. In the univariate case m = 1, we simply write Y = Y1 and s = s1.

Example 2.1 (Subalgebra and submodule zeta functions [6]). The following goes back
to [9, 18], see [21] for a survey; we use the formalism from [13, §2.1].

(i) Let R be a compact discrete valuation ring and let A be a possibly non-associative
R-algebra whose underlying R-module is finitely generated. For n ∈ N, let a6n (A)
denote the number of subalgebras U of A such that the R-module A/U has cardi-
nality n. The subalgebra zeta function of A is ζ6A (s) =

∑∞
n=1 a

6
n (A)n−s.

LetA be a possibly non-associative finite-dimensional k-algebra. Choose an o-form A
of A. By [6, Thm 1.4] (cf. [13, Thm 5.16]), there is a k-local map ZA : (Vk\S)×N→
Q(Y ) of Denef type with ẐAK(s) = ζ6A⊗oOK

(s) for all non-Archimedean local fields K
which extend k. The equivalence class of ZA only depends on A.
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(ii) Let R be a compact discrete valuation ring, M be a finitely generated R-module,
and let E be an associative unital R-subalgebra of EndR(M). For n ∈ N, let
bn(E y M) denote the number of E-submodules U ⊂ M such that the R-module
M/U has cardinality n. The submodule zeta function of E acting on M is
ζEyM(s) =

∑∞
n=1 bn(E y M)n−s. Let M be a finite-dimensional vector space

over k, and let E be an associative subalgebra of Endk(M). Choose an o-form M
of M and an o-form E ⊂ Endo(M) of E . Similarly to (i), we obtain a k-local map
ZEyM : (Vk \S)×N→ Q(Y ) of Denef type with ẐEyM

K (s) = ζ(E⊗oOK)y(M⊗oOK)(s)
for all non-Archimedean local fields K which extend k.

Example 2.2 (Representation zeta functions). For details on the following, we refer to
[11] and [21, §4]. Let G be a topological group. For n ∈ N, let rn(G) ∈ N∪{0,∞} denote
the number of equivalence classes of continuous irreducible representations G→ GLn(C).
Supposing that rn(G) < ∞ for all n, the representation zeta function of G is
ζ irr

G (s) =
∑∞

n=1 rn(G)n−s. Two continuous complex representations % and σ of G are
twist-equivalent if % is equivalent to σ ⊗C α for a continuous 1-dimensional complex
representation α of G. For n ∈ N, let r̃n(G) denote the number of twist-equivalence classes
of continuous irreducible representations G→ GLn(C). Supposing that r̃n(G) <∞ for
all n, the twist-representation zeta function of G is ζ ĩrr

G (s) =
∑∞

n=1 r̃n(G)n−s.

(i) (See [19].) Let G be a unipotent algebraic group over k. Choose an affine group
scheme G of finite type over o such that G⊗o k and G are isomorphic over k. There
exists a finite set S ⊂ Vk such that G(OK) is a finitely generated nilpotent pro-pv

group for v ∈ Vk \ S and all finite extensions K/kv. By [19, Pf of Thm A], after
enlarging S, we obtain a k-local map ZG,ĩrr : (Vk \ S)×N→ Q(Y ) of Denef type
with ẐG,ĩrr

K (s) = ζ ĩrr
G(OK)(s); the equivalence class of ZG,ĩrr only depends on G.

(ii) (See [1].) Let g be a finite-dimensional perfect Lie k-algebra. Choose an o-form
g of g. As explained in [1, §2.1], there exists a finite set S ⊂ Vk such that for
each v ∈ Vk \ S and f ∈ N, the set G1(o(f)

v ) := p
(f)
v (g ⊗o o

(f)
v ) can be naturally

endowed with the structure of a FAb pv-adic analytic pro-pv group; here, o(f)
v is

the valuation ring of k(f)
v and p

(f)
v the maximal ideal of o(f)

v . By [1, §§3–4], after
enlarging S, we obtain a map of Denef type Zg,irr : (Vk \ S) ×N → Q(Y ) with
Ẑg,irr

k
(f)
v

(s) = ζ irr
G1(o(f)

v )
(s), the equivalence class of which only depends on g.

We note that there are natural algebraic counting problems that give rise to local zeta
functions but not to local maps. For example, it follows from work of Segal [16] that the
zeta function enumerating ideals of finite additive index of Zp[T ] is not rational in p−s.

2.3 Main results
The following result, which we will prove in §2.4, constitutes the technical heart of this
article. As before, let k be a number field with ring of integers o.
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Theorem 2.3. Let V1, . . . , Vr be separated o-schemes of finite type and let W1, . . . ,Wr ∈
Q(X,Y1, . . . , Ym). Suppose that (q, Y1, . . . , Ym) is a regular point of each Wi for each
integer q > 1. Let P ⊂ Vk be a set of places of density 1 and suppose that for all v ∈ P ,
we have

r∑
i=1

#Vi(Kv) ·Wi(qv, Y1, . . . , Ym) = 0. Then there exists a finite set S ⊂ Vk such

that for all v ∈ Vk \ S and all f ∈ N, we have
r∑

i=1
#Vi(K(f)

v ) ·Wi(qf
v , Y1, . . . , Ym) = 0.

We now discuss consequences of Theorem 2.3 for local maps of Denef type. The
following implies the first two theorems stated in the introduction.

Corollary 2.4. Let Z,Z′ be k-local maps of Denef type. Let P ⊂ Vk \ (SZ ∪ SZ′) have
density 1 and let Z(v, 1) = Z′(v, 1) for all v ∈ P . Then Z and Z′ are equivalent. That is,
there exists a finite set S ⊃ SZ ∪ SZ′ with Z(v, f) = Z′(v, f) for all v ∈ Vk \ S and f ∈ N.

Proof. Apply Theorem 2.3 to the difference Z− Z′. �

Example 2.5. Let H(R) =
[ 1 R R

0 1 R
0 0 1

]
be the Heisenberg group scheme. It follows from

work of Nunley and Magid [12] that ζ ĩrr
H(Zp)(s) = 1−p−s

1−p1−s for all p. Using Corollary 2.4 and

Example 2.2, we deduce that ζH(OK)(s) = 1−q−s
K

1−q1−s
K

for almost all p and all finite extensions
K/Qp. Stasinski and Voll [19, Thm B] proved that no primes need to be excluded here.

In analogy with [8, §1.2.4], we say that a k-local map Z is uniform if it is equivalent to
(v, f) 7→W (qf

v , Y1, . . . , Ym) for someW ∈ Q(X,Y1, . . . , Ym) which is regular at each point
(q, Y1, . . . , Ym) for each integer q > 1. We then say that W uniformly represents Z.

Corollary 2.6. Let Z be a k-local map of Denef type. Let P ⊂ Vk \ SZ have density 1
and let W ∈ Q(X,Y1, . . . , Ym) be regular at (q, Y1, . . . , Ym) for all integers q > 1. If
Z(v, 1) = W (qv, Y1, . . . , Ym) for all v ∈ P , then W uniformly represents Z.

Proof. Apply Corollary 2.4 with Z′(v, f) = W (qf
v , Y1, . . . , Ym). �

This, in particular, applies to a large number of examples of uniform p-adic subalgebra
and ideal zeta functions computed by Woodward [8]. Specifically, [8, Ch. 2] contains
numerous examples of Lie rings L such that ζ6L⊗Zp

(s) = W (p, p−s) for some W ∈ Q(X,Y )
and all rational primes p (or almost all of them). Corollary 2.6 shows that for almost
all p and all finite extensions K/Qp, we then have ζ6L⊗OK

(s) = W (qK , q
−s
K ).

2.4 Proof of Theorem 2.3
We first recall some facts from [17, Ch. 3–4]. Let G be a profinite group. We let Cl(g)
denote the conjugacy class of g ∈ G and write Cl(G) := {Cl(g) : g ∈ G}. We may
naturally regard Cl(G) as a profinite space by endowing it with the quotient topology or,
equivalently, by identifying Cl(G) = lim←−N/oG

Cl(G/N), where N ranges over the open
normal subgroups of G and each Cl(G/N) is regarded as a discrete space.
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As before, let k be a number field with ring of integers o. Fix an algebraic closure k̄
of k. For a finite set S ⊂ Vk, let ΓS denote the Galois group of the maximal extension
of k within k̄ which is unramified outside of S. For v ∈ Vk \ S, choose gv ∈ ΓS in the
conjugacy class of geometric Frobenius elements associated with v, see [17, §§4.4, 4.8.2].
The following is a consequence of Chebotarev’s density theorem.

Theorem 2.7 (Cf. [17, Thm 6.7]). Let P ⊂ Vk \S have density 1. Then {Cl(gv) : v ∈ P}
is a dense subset of Cl(ΓS).

While only natural densities are considered in [17] (see [17, §§1.3, 3.1.3]), the proof of
[17, Thm 6.7] implies Theorem 2.7 in the form stated here (i.e. for Dirichlet densities).
Fix a prime `. Recall that a virtual `-adic character of a profinite group G is a

map α : G→ Q` of the form g 7→
∑u

i=1 ci trace(%i(g)), where c1, . . . , cu ∈ Z and each %i

is a continuous homomorphism from G into some GLni(Q`). Note that such a map α
induces a continuous map Cl(G)→ Q`.

The next result follows from Grothendieck’s trace formula [17, Thm 4.2] and the generic
cohomological behaviour of reduction modulo non-zero primes of o [17, Thm 4.13].

Theorem 2.8 (See [17, Ch. 4] and cf. [17, §§6.1.1–6.1.2]). Let V be a separated o-scheme
of finite type. Then there exist a finite set S ⊂ Vk and a virtual `-adic character α of ΓS

such that #V (K(f)
v ) = α(gf

v ) for all v ∈ Vk \ S and all f ∈ N.

Note that since #V (Kv) ∈ N ∪ {0} for all v ∈ Vk and {Cl(gv) : v ∈ Vk \ S} is dense in
Cl(ΓS), the virtual character α in Theorem 2.8 is Z`-valued.

Proof of Theorem 2.3. There exists a non-zero D ∈ Z[X,Y1, . . . , Ym] such that DWi ∈
Z[X,Y1, . . . , Ym] for i = 1, . . . , r and D(q, Y1, . . . , Ym) 6= 0 for integers q > 1. The proof of
Theorem 2.3 is thus reduced to the case W1, . . . ,Wr ∈ Z[X,Y1, . . . , Ym]. By considering
the coefficients of each monomial Y a1

1 · · ·Y am
m , we may assume that W1, . . . ,Wr ∈ Z[X].

Let V0 := A1
o. By Theorem 2.8, there exists a finite set S ⊂ Vk and for 0 6 i 6 r, a

continuous virtual `-adic character γi : ΓS → Z` with #Vi(K(f)
v ) = γi(gf

v ) for all v ∈ Vk \S
and f ∈ N. By construction, the virtual character α :=

∑r
i=1 γi ·Wi(γ0) : ΓS → Z`

satisfies α(gv) = 0 for v ∈ P \S whence α = 0 by Theorem 2.7. The theorem now follows
by evaluating α at the gf

v . �

Lemma 2.9. In the setting of Theorem 2.3, suppose that each Vi ⊗o k is smooth and
proper over k. Let S′ ⊂ Vk such that v ∈ Vk \ S′ if and only if Vi ⊗ Kv is smooth and
proper over Kv for each i = 1, . . . , r. Then we may take S = S′ in Theorem 2.3.

Proof. By the proof of Theorem 2.3 and [17, §4.8.4], for every prime `, we may take
S = S′ ∪ {v ∈ Vk : pv = `} in Theorem 2.3. The claim follows since ` is arbitrary. �

3 Application: topological zeta functions and p-adic formulae
Denef and Loeser introduced topological zeta functions of polynomials using an `-adic
limit “p → 1” of Igusa’s p-adic zeta functions, see [3]; for an approach using motivic
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integration, see [4]. Based on the motivic point of view, du Sautoy and Loeser [7, §8]
introduced topological subalgebra zeta functions. In this section, we show that p-adic
formulae determine associated topological zeta functions and we discuss consequences.
We recall the formalism from [13, §5] as in [15, §3.1]. For e ∈ Q[s1, . . . , sm],

the expansion Xe :=
∑∞

d=0
(e

d

)
(X − 1)d ∈ Q[s1, . . . , sm][[X − 1]] yields an embed-

ding h 7→ h(X,X−s1 , . . . , X−sm) of Q(X,Y1, . . . , Ym) into Q(s1, . . . , sm)((X − 1)). Let
M[X,Y1, . . . , Ym] be the subalgebra of Q(X,Y1, . . . , Ym) consisting of those W = g/h
with W (X,X−s1 , . . . , X−sm) ∈ Q(s1, . . . , sm)[[X − 1]], where g ∈ Q[X±1, Y ±1

1 , . . . , Y ±1
m ]

and h is a finite product of non-zero factors 1 − XaY b1
1 · · ·Y bm

m for a, b1, . . . , bm ∈ Z.
Given W ∈ M[X,Y1, . . . , Ym], write bW c := W (X,X−s1 , . . . , X−sm) mod (X − 1) ∈
Q(s1, . . . , sm). We say that a k-local map Z is expandable if it is equivalent to a sum of
maps [V ·W ], where V is a separated o-scheme of finite type and W ∈M[X,Y1, . . . , Ym].

Example 3.1.

(i) The local maps ZG,ĩrr and Zg,irr from §2.2 are expandable, see [15, §§3.2–3.3].

(ii) If A andM from Example 2.1 have k-dimension d, then the local maps (1−X−1)dZA
and (1−X−1)dZEyM (pointwise products) are both expandable by [13, Thm 5.16].

If V is a k-variety, then any embedding k ↪→ C allows us to regard V (C) as a C-analytic
space. Comparison theorems (see e.g. [10]) show that the topological Euler characteristic
χ(V (C)) does not depend on the embedding. The following formalises insights from [3].

Theorem 3.2 (Cf. [13, Thm 5.12]). Let V1, . . . , Vr be separated o-schemes of finite type, let
W1, . . . ,Wr ∈M[X,Y1, . . . , Ym], and let S ⊂ Vk be finite. Suppose that for all v ∈ Vk \ S
and f ∈ N, we have

r∑
i=1

#Vi(K(f)
v ) ·Wi(qf

v , Y1, . . . , Ym) = 0. Then
r∑

i=1
χ(Vi(C)) · bWic = 0.

Let Z be a k-local map equivalent to [V1 ·W1] + · · ·+ [Vr ·Wr], where V1, . . . , Vr are
separated o-schemes of finite type and W1, . . . ,Wr ∈M[X,Y1, . . . , Ym]. By Theorem 3.2,
we may unambiguously define the topological zeta function Ztop ∈ Q(s1, . . . , sm)
associated with Z via Ztop :=

∑r
i=1 χ(Vi(C)) · bWic. By applying this definition to the

local maps in Example 3.1, topological versions of the zeta functions from §2.2 are defined.

Corollary 3.3. Let Z and Z′ be k-local maps of Denef type. Let P ⊂ Vk \ (SZ ∪ SZ′)
have density 1 and suppose that Z(v, 1) = Z′(v, 1) for all v ∈ P . If Z is expandable, then
so is Z′ and Ztop = Z′top.

Proof. Combine Corollary 2.4 and Theorem 3.2. �

For instance, given Z-forms A and B of Q-algebras of the same dimension, if ζ6A⊗Zp
(s) =

ζ6B⊗Zp
(s) for almost all p, then A and B have the same topological subalgebra zeta function.

In the introductions to [13–15], the author informally “read off” topological zeta
functions from p-adic formulae. The informal nature was due to some of these formulae
only being known under variation of p but not under base extension. Corollary 3.3 and
the following lemma show that this approach is fully rigorous.
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Lemma 3.4. Let W = g(X,Y1, . . . , Ym)/
∏

i∈I(1−XaiY bi1
1 · · ·Y bim

m ) ∈ Q(X,Y1, . . . , Ym)
for a Laurent polynomial g ∈ Q[X±1, Y ±1

1 , . . . , Y ±1
m ], a finite set I, and integers ai, bij

with (ai, bi1, . . . , bim) 6= 0 for i ∈ I. Let Z be an expandable k-local map which is uniformly
represented by W . Then W ∈M[X,Y1, . . . , Ym] and thus Ztop = bW c.

Proof. By [13, Thm 5.12], there exists a finite union of affine hyperplanes H ⊂ Am
Z such

that for any prime ` and almost all v ∈ Vk, there exists d ∈ N such that

N× (Zm \ H(Z))→ Q, (f ; s) 7→ Ẑ
k

(df)
v

(s1, . . . , sm)

is well-defined and admits a continuous extension Φ: Z` × (Zm
` \ H(Z`)) → Q`. We

may assume that ai 6=
∑m

j=1 bijsj for i ∈ I and s ∈ Zm
` \ H(Z`). Since W uniformly

represents Z, we may choose (H, `, v, d) such that Φ(f ; s) = W (qdf
v , q

−dfs1
v , . . . , q−dfsm

v ) for
(f ; s) ∈ N× (Zm \H(Z)). Finally, we may also assume that ` 6= 2 and that qd

v ≡ 1 mod `.
Let w be the (X − 1)-adic valuation of g(X,X−s1 , . . . , X−sm) ∈ Q[s1, . . . , sm][[X −

1]]. Define G(s1, . . . , sm;X − 1) ∈ Q[s1, . . . , sm][[X − 1]] by g(X,X−s1 , . . . , X−sm) =
(X − 1)w ·G(s1, . . . , sm;X − 1) and note that G(s1, . . . , sm; 0) 6= 0. As in the proof of
[13, Lem. 5.6], using the `-adic binomial series, for f ∈ Z` and s ∈ Zm

` , we have

g((qd
v)f , (qd

v)−fs1 , . . . , (qd
v)−fsm) = ((qd

v)f − 1)w ·G(s; (qd
v)f − 1). (3.1)

Let s∞ ∈ Zm
` \H(Z`) such that G(s1, . . . , sm; 0) does not vanish at s∞. Let (fn)n∈N ⊂ N

with fn → 0 in Z` and (sn)n∈N ⊂ Zm \H(Z) with sn → s∞ in Zm
` . Let xn := qdfn

v . Then

W (xn, x
−sn1
n , . . . , x−snm

n ) = Φ(fn; sn)→ Φ(0; s∞) ∈ Q` (3.2)

as n → ∞. Let ein := ai − bi1sn1 − · · · − bimsnm. Using (3.1), the left-hand side of
(3.2) coincides with G(sn;xn − 1) · (xn − 1)w/

∏
i∈I

(
1− xein

n

)
and since the left factor of

the latter expression converges to G(s∞; 0) ∈ Q×` for n→∞, the quotient on the right
converges to an element of Q`. As |xe

n−1|` = |e|` · |xn−1|` for e ∈ Z` and limn→∞ ein 6= 0
for i ∈ I, this easily implies w > #I whence W ∈M[X,Y1, . . . , Ym]. �

4 Application: functional equations and uniformity
Let A be a possibly non-associative Z-algebra whose underlying Z-module has finite
rank d. In an influential paper, du Sautoy and Grunewald [6] established the existence of
schemes V1, . . . , Vr and W1, . . . ,Wr ∈ Q(X,Y ) such that for almost all primes p,

ζ6A⊗Zp
(s) =

r∑
i=1

#Vi(Fp) ·Wi(p, p−s). (4.1)

Voll [20, Thm A] established, for almost all p, the functional equation

ζ6A⊗Zp
(s)
∣∣
p→p−1 = (−1)dp(

d
2)−ds · ζ6A⊗Zp

(s), (4.2)

where the operation of “inverting p” is defined with respect to a particular formula (4.1).
In this section, we will see that this operation is independent of the chosen Vi and
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Wi in (4.1) in the following sense: knowing that (4.2) behaves well under local base
extensions, any other formula (4.1) (subject to minor technical constraints) behaves in
the same way under inversion of p for almost all p.
We begin by recalling the formalism for “inverting primes” from [5] which we then

combine with our language of local maps from §2. First, let U be a separated scheme of
finite type over a finite field Fq. As explained in [5, §2] and [17, §1.5], there are non-zero
m1, . . . ,mu ∈ Z and distinct non-zero α1, . . . , αu ∈ Q̄ such that for each f ∈ N,

#U(Fqf ) =
u∑

i=1
miα

f
i . (4.3)

By [5, Lem. 2], up to permutation, the (mi, αi) are uniquely determined by (4.3). As
in [17, §1.5], one may thus use (4.3) to unambiguously extend the definition of #U(Fqf )
to arbitrary f ∈ Z.

Lemma 4.1. Let U1, . . . , Ur be separated Fq-schemes of finite type. Let W1, . . . ,Wr ∈
Q(X,Y1, . . . , Ym) be regular at (qf , Y1, . . . , Ym) for all f ∈ Z \ {0}. Suppose that

r∑
i=1

#Ui(Fqf ) ·Wi(qf , Y1, . . . , Ym) = 0 for all f ∈ N. Then this identity extends to

all f ∈ Z \ {0}.

Proof. As in the proof of Theorem 2.3, we may reduce to the case where each Wi ∈ Z[X].
The result then follows from [5, Lem. 2] and its corollary, cf. the proof of [5, Lem. 3]. �

Corollary 4.2. Let V1, . . . , Vr be separated o-schemes of finite type and let W1, . . . ,Wr ∈
Q(X,Y1, . . . , Ym) each be regular at (qf , Y1, . . . , Ym) for all integers q > 1 and all
f ∈ Z \ {0}. Let P ⊂ Vk have density 1 and suppose that for all v ∈ P , we have

r∑
i=1

#Vi(Kv) ·Wi(qv, Y1, . . . , Ym) = 0. Then there exists a finite set S ⊂ Vk such that for

all v ∈ Vk \ S and all f ∈ Z \ {0}, we have
r∑

i=1
#Vi(K(f)

v ) ·Wi(qf
v , Y1, . . . , Ym) = 0.

Proof. Combine Theorem 2.3 and Lemma 4.1. �

Let V1, . . . , Vr be separated o-schemes of finite type, W1, . . . ,Wr ∈ Q(X,Y1, . . . , Ym)
be regular at (qf , Y1, . . . , Ym) for integers q > 1 and f ∈ Z \ {0}. Let Z be a k-local map
which is equivalent to [V1 ·W1] + · · ·+ [Vr ·Wr]. For a sufficiently large finite set S ⊂ Vk,

Z∗ : (Vk \ S)× (Z \ {0})→ Q(Y1, . . . , Ym),

(v, f) 7→
r∑

i=1
#Vi(K(f)

v ) ·Wi(qf
v , Y

sgn(f)
1 , . . . , Y sgn(f)

m ) (4.4)

satisfies Z∗(v, f) = Z(v, f) for v ∈ Vk \S and f ∈ N. By Lemma 4.1, Z∗ is determined by
the equivalence class of Z (up to enlarging S). Let Ẑ∗(v, f) := Z∗(v, f)(q−fs1

v , . . . , q−fsm
v ).

Lemma 4.3 (Cf. [5, Cor. to Thm 4]). Suppose that the k-local map Z is uniformly
represented by W ∈ Q(X,Y1, . . . , Ym) which is regular at each point (qf , Y1, . . . , Ym) for
integers q > 1 and f ∈ Z \ {0}. Then for almost all v ∈ Vk and all f ∈ N, we have
Z∗(v,−f) = W (q−f

v , Y −1
1 , . . . , Y −1

m ) and thus Ẑ∗(v,−f) = W (q−f
v , qfs1

v , . . . , qfsm
v ).
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The zeta functions from §2.2 are known to admit extensions of the form (4.4).

Theorem 4.4.

(i) ([20, Thm A]) Let A be a not necessarily associative k-algebra of dimension d.
Then for almost all v ∈ Vk and all f ∈ N,

ZA∗ (v,−f) = (−1)d(qf
v )(

d
2)Y d ·ZA(v, f).

(ii) ([1, Thm A]) Let g be a perfect Lie k-algebra of dimension d. Then for almost all
v ∈ Vk and all f ∈ N,

Zg,irr
∗ (v,−f) = qdf

v ·Zg,irr(v, f).

(iii) ([19, Thm A]) Let G be a unipotent algebraic group over k. Let d be the dimension
of the (algebraic) derived subgroup of G. Then for almost all v ∈ Vk and all f ∈ N,

ZG,ĩrr
∗ (v,−f) = qdf

v ·ZG,ĩrr(v, f).

Let (4.1) hold for almost all p, where the Wi are regular at (qf , Y ) for integers q > 1
and f ∈ Z \ {0}. Then Corollary 4.2 and Theorem 4.4(i) show that for almost all p,

r∑
i=1

#Vi(Fp−1) ·Wi(p−1, ps) = (−1)dp(
d
2)−ds · ζ6A⊗Zp

(s),

regardless of whether the Vi and Wi were obtained as in the proof of Theorem 4.4(i) or
not. Note that in the uniform case (r = 1, V1 = Spec(Z)), we obtain W1(X−1, Y −1) =
X(d

2)Y d ·W1(X,Y ). This explains why the various uniform examples of local subalgebra
zeta functions computed by Woodward [8,22] satisfy a functional equation even though
the methods he used to compute them differ considerably from Voll’s approach.
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