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1 Introduction

Let V be a finite-dimensional vector space over a field K and let G 6 GL(V ) be an
irreducible linear group over K. If there exists a decomposition V = U1 ⊕ · · · ⊕Ur into a
direct sum of proper subspaces permuted by G, then G is imprimitive; otherwise, G is
primitive. Irreducibility and primitivity of linear groups play a similarly fundamental
role in the theory of linear groups as transitivity and primitivity do for permutation
groups; for basic results on primitivity, we refer to [21, §15].

Related work: primitive nilpotent linear groups over finite fields. Detinko and Flan-
nery [5] investigated primitive nilpotent linear groups over finite fields. Their work
culminated in a classification [4] of these groups in the sense that they constructed ex-
plicit representatives for the conjugacy classes of primitive nilpotent subgroups of GLd(Fq).
Building on their classification, they devised an algorithm [6, Alg. 7] which simultaneously
tests irreducibility and primitivity of nilpotent linear groups over finite fields.
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Previous work: primitivity testing. Inspired by [6], the author developed methods
for irreducibility [17] and primitivity [18] testing of finite nilpotent linear groups over
many fields of characteristic zero, including number fields. At the heart of primitivity
testing in [6, 18] lies a distinguished class of nilpotent groups: as in [17,18], by an ANC
group, we mean a finite nilpotent group whose abelian normal subgroups are all cyclic.
These groups are severely restricted in their structure, see Theorem 3.1. It follows from
Clifford’s theorem that every primitive finite nilpotent linear group is an ANC group.

Results I: primitivity of G(K). Given our ability from [18] to test primitivity of linear
ANC groups, it is natural to ask for a description of those ANC groups which arise as
primitive linear groups over a given number field. Among other things, the present article
provides such a description. First, for an ANC group G and a number field K, in §3, we
construct an irreducible K-linear group G(K) (Definition 3.8) with G ∼= G(K). Based
on our previous work on primitivity testing, in §4, we then characterise primitivity of
G(K) in terms of field-theoretic conditions (Lemma 4.2, Proposition 4.4). As we will see
in §5, we can express these conditions in terms of numerical invariants, κK and κ±K , of
K which we introduce in Definition 5.1. We will further see that these invariants can
be determined using a finite computation (Remark 5.6). In §6, we then derive our first
main result and the technical heart of the present article, Theorem 6.4, which provides a
concise description of those non-abelian ANC groups G such that G(K) is primitive.

Results II: uniqueness of G(K) and further properties of linear ANC groups. Theo-
rem 7.1 shows that an irreducible K-linear ANC group G is necessarily similar to G(K).
It follows that the necessary and sufficient conditions for primitivity of G(K) from §3
in fact characterise all primitive finite nilpotent linear groups over K (up to similarity).
Based on our detailed knowledge of the groups G(K), we then derive an asymptotic
bound for the number of similarity classes of primitive finite nilpotent linear groups of
given degree over K (Proposition 7.4). Finally, we show that for every ANC group G,
the group G(K) is primitive for some number field K (Proposition 7.5).

Results III: primitive nilpotent linear groups over cyclotomic and quadratic fields.
As a demonstration of the explicit nature of the results in §6, in §8, we list those ANC
groups G such that G(K) is primitive for two infinite families of number fields, namely
cyclotomic (Theorem 8.1) and quadratic (Theorem 8.5) fields. We proceed by computing
the invariants κK and κ±K for such fields and by invoking Theorem 6.4.

Related work: Sylow subgroups of general linear groups. For arbitrary fields K, the
primitive Sylow p-subgroups of GLd(K) have been classified in terms of arithmetic
properties of K, see [12, 14, 22]. (The historically first account, [22], contained a mistake
which was corrected in the other two articles mentioned.) We note that in the particular
case of ANC p-groups, there is an unavoidable overlap between the techniques used in
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the present article and those in [12,14], see Remark 6.6.

Most of the results in the present article are contained in [19, Ch. 12–14]. Remark 4.5
corrects a minor mistake in the author’s article [18].

Notation

We write A ⊂ B to indicate that A is a not necessarily proper subset of B. We write
N = {1, 2, . . . } and 2N − 1 = {1, 3, 5, . . . }. We often write (a, b) = gcd(a, b) for the
non-negative greatest common divisor of a, b ∈ Z. For a prime p, we let νp(a) ∈ Z∪ {∞}
be the usual p-adic valuation of a ∈ Q. For coprime a,m ∈ Z, we let ord(a mod m)
denote the multiplicative order of a+mZ in (Z/mZ)×.

2 Background

Linear groups. Apart from some of our terminology, the following is folklore; see
[21, Ch. IV]. By the degree of a linear group G 6 GL(V ) over K, we mean the K-
dimension |V : K| of V . Given G 6 GL(V ), we let K[G] denote the subalgebra of End(V )
spanned by G. We say that G is homogeneous if K[G] is simple. Since the centre
of a simple algebra is a field, if G is homogeneous, then so is its centre Z(G). If G is
irreducible, then it is homogeneous. An abelian group A 6 GL(V ) is homogeneous if and
only if K[A] is a field. Two linear groups G 6 GL(V ) and H 6 GL(W ), both over K, are
similar if there exists a K-isomorphism θ : V →W with θ−1Gθ = H. Similar K-linear
groups of a given degree, d say, correspond exactly to conjugacy classes of subgroups of
GLd(K).

Schur indices. For details on the following, see [3, §70], [9, §38], and [10, §10]. Let K
be a field of characteristic zero and let K̄ be an algebraic closure of K. Let G be a finite
group and let IrrK(G) denote the set of irreducible K-characters of G. For χ ∈ IrrK̄(G),
there exists a finite extension L/K(χ) such that χ is afforded by an LG-module. The
Schur index mK(χ) of χ over K is the smallest possible degree |L : K(χ)|.
Let ψ ∈ IrrK(G). By [3, Thm 70.15], there exists χ ∈ IrrK̄(G) such that ψ =

mK(χ)
(∑

σ∈Γ χ
σ
)
, where Γ = Gal(K(χ)/K) and the conjugates χσ ∈ IrrK̄(G) are

distinct. If the KG-module V affords ψ, then the above decomposition of ψ can be found
by splitting the EG-module V ⊗K E, where E ⊃ K is a splitting field for G which is
Galois over K. Conversely, let χ ∈ IrrK̄(G). Choose L ⊃ K(χ) with |L : K(χ)| = mK(χ)
such that χ is afforded by an LG-module W . By [9, Ex. 1.6(e)], the character of W as a
KG-module is mK(χ)

(∑
σ∈Γ χ

σ
)
, where again Γ = Gal(K(χ)/K). The characters χσ are

distinct by [10, Lem. 9.17(c)]. It follows from [10, Cor. 10.2(b)] that mK(χ)
(∑

σ∈Γ χ
σ
)

is the character of an irreducible KG-module and we conclude from [15, 8.3.7] that W is
irreducible as a KG-module.
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Cyclotomic fields. Throughout this article, Q̄ denotes the algebraic closure of Q in C.
Let ζn ∈ Q̄ be a fixed but arbitrary primitive nth root of unity and let En = Q(ζn) denote
the nth cyclotomic field. For n = 2jm where m is odd, let E±n = Q(ζ

2j
± ζ−1

2j
)Em ⊂ En

if j > 3 and E±n = Em for 0 6 j 6 2. It is easy to see that E±n = Q(ζk
2j
± ζ−k

2j
, ζ`m) for any

odd k ∈ Z and ` ∈ Z with (`,m) = 1. We often let E◦n denote one of the fields En, E+
n ,

and E−n . Note that if n,m ∈ N with (n,m) = 1 and ◦ ∈ {+,−, }, then E◦nE
◦
m = E◦nm.

We often use the identities En ∩Em = E(n,m) and EnEm = Elcm(n,m), see [20, §11].

3 The construction of G(K)

Let K be a field of characteristic zero with algebraic closure K̄. In this section, given an
ANC group G, we construct an irreducible linear group G(K) (Definition 3.8) over K
with G(K) ∼= G.

Abstract ANC groups. Let Gp denote the Sylow p-subgroup of a finite nilpotent group
G and let Gp′ =

∏
6̀=pG` be its Hall p′-subgroup. Let D2j , SD2j , and Q2j denote the

dihedral, semidihedral, and generalised quaternion group of order 2j , respectively; see
[15, §5.3].

Theorem 3.1 ([16, Lem. 3]). A non-cyclic finite nilpotent group G is an ANC group if
and only if G2′ is cyclic and G2 is isomorphic to Q8 or to D2j , SD2j , or Q2j for j > 4.

Note the absence of D8 which contains a non-cyclic abelian maximal subgroup.

Irreducible K̄-representations of ANC 2-groups. We henceforth identify Q̄ ⊂ K̄ which
allows us to consider composite fields of the form E◦

2j
K, where E◦

2j
is defined as in §2.

Definition 3.2 ([18, §7]). For a non-abelian ANC group G, let ϑ(G) = 1 if G2 is
(semi)dihedral and ϑ(G) = −1 if G2 is generalised quaternion. Further let δ(G) = 1 if G2

is dihedral or generalised quaternion and δ(G) = −1 if G2 is semidihedral.

Proposition 3.3 (Cf. [13, Prop. 10.1.16]). Let G = 〈a, g〉 be a non-abelian ANC 2-group
(or G ∼= D8), where 〈a〉 is cyclic of order 2j and index 2 in G and g2 = 1 if ϑ(G) = 1
and g4 = 1 if ϑ(G) = −1. Up to equivalence, the faithful irreducible K̄-representations
of G, written over the splitting field E2jK of G, are precisely given by

%G,Kk : G→ GL2(E2jK), a 7→
[
ζk

2j
0

0 δ(G)ζ−k
2j

]
, g 7→

[
0 1

ϑ(G) 0

]
,

where 0 < k < 2j−1 and k is odd.

Let χG,Kk be the character of %G,Kk with character field K(χG,Kk ) = K(ζk
2j

+ δ(G) · ζ−k
2j

)

over K (see [13, Prop. 10.1.17]); note that K(χG,Kk ) = E±
2j
K does not depend on k. We

now consider the Schur indices (see §2) of these characters.

Lemma 3.4 ([13, Prop. 10.1.17(i)]). mK(χG,Kk ) = 1 if G is (semi)dihedral.
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For generalised quaternion groups, we compute Schur indices using a variation of
[13, Prop. 10.1.17(ii)–(iii)]. The case G ∼= Q8 of the following is well-known, cf. [3, p. 470];
the first part can also be deduced from [10, Prb. 10.5].

Lemma 3.5. Let G ∼= Q2j+1 . If x2+y2 = −1 is soluble in K(χG,Kk ), then mK(χG,Kk ) = 1;
otherwise, mK(χG,Kk ) = 2.

Proof. Since ζ2j is chosen arbitrarily among the primitive 2jth roots of unity, we may
assume that k = 1. Write θi = ζ

2i
+ ζ−1

2i
. The corresponding statements for the equation

x2 + θjxy + y2 = −1 over K(χG,Kk ) = K(θj) follow from [13, Prop. 10.1.17(ii)–(iii)]. It
suffices to show that ai =

[ 1 θi/2
θi/2 1

]
is congruent to the 2× 2 identity matrix over Q(θi)

for i > 2. We may assume that ζ2
2i+1 = ζ

2i
for i > 0 so that θ2

i = 2+θi−1 for i > 1. Hence,
(2 + θi)(2− θi) = 4− θ2

i = 2− θi−1. Let λ3 = θ3 and λi = λi−1/θi ∈ Q(θi) (i > 4). By
induction, λ2

i = 2− θi−1 for i > 3; indeed λ2
i = λ2

i−1/θ
2
i = (2− θi−2)/(2 + θi−1) = 2− θi−1

for i > 4. We obtain xiaixTi = 1, where x2 = 1 and xi =
[ 1 0
θi/λi −2/λi

]
(i > 3). �

Irreducible K-representations of ANC 2-groups: constructing σG,Kk . Let G = 〈a, g〉
and k be as in Proposition 3.3. Let χk := χG,Kk , %k := %G,Kk , and Z := K(χk) = E±

2j
K.

In the following, we will construct an irreducible faithful K-representation σG,Kk of G.
Define L = E2jK and ∆ = Gal(L/Z).

Case 1: ζ4 ∈ Z.
Since E±

2j
(ζ4) = E

2j
, we have L = Z (so that mK(χk) = 1). We define σG,Kk to be the

irreducible K-representation obtained from %k by restriction of scalars (cf. §2).

Case 2: ζ4 6∈ Z.
In this case, L = Z(ζ4) is a quadratic extension of Z and

ψ : L→ M2(Z), α+ ζ4 ·β 7→
[

α β
−β α

]
(α, β ∈ Z)

is equivalent to the regular representation of L as a Z-algebra. Hence, traceZ(uψ) =
traceL/Z(u) for u ∈ L. Our use of ψ in the following is similar to and inspired by
arguments in [12]. Note that the space of matrices of the form

[ α β
β −α

]
(α, β ∈ Z) is the

orthogonal complement of Lψ with respect to the trace bilinear form (s, t) 7→ traceZ(st)
on M2(Z). We distinguish the following three subcases.

Case 2a: ϑ(G) = 1.
The Z-representation τk : G→ GL2(Z) given by a 7→ ζk

2j
ψ and g 7→ diag(1,−1) affords

χk. We define σG,Kk to be the (irreducible) restriction of scalars of τk to K.

Case 2b: ϑ(G) = −1 and mK(χk) = 1.
By Lemma 3.5, mK(χk) = 1 is equivalent to the existence of x, y ∈ Z with x2 + y2 = −1;
we assume that (x, y) has been chosen independently of k. Let t =

[ x y
y −x

]
and let γ ∈ ∆
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be defined by (α+ ζ4 ·β)γ = α− ζ4 ·β for α, β ∈ Z. Then (aγ)ψ = t−1(aψ)t for all a ∈ L
and t2 = −1. We conclude that υk : G → GL2(Z) defined by a 7→ (ζk

2j
)ψ and g 7→ t

affords χk. We define σG,Kk to be the (irreducible) restriction of scalars of υk to K.
Case 2c: ϑ(G) = −1 and mK(χk) = 2.
We define σG,Kk to be the restriction of scalars of %k to K; since σG,Kk affords the K-
character 2

∑
σ∈Γ χ

σ
k (where Γ = Gal(K(χk)/K)), it is irreducible.

Using Proposition 3.3 and the description of the irreducible K-representations of a
finite group in terms of Galois orbits of its irreducible K̄-representations in §2, we deduce
the following.

Proposition 3.6. Let G be a non-abelian ANC 2-group. Then every faithful irreducible
K-representation of G is equivalent to σG,Kk for some odd k. �

We record the following consequence of our construction of σG,Kk for later use in §7.

Lemma 3.7. Let G be a non-abelian ANC 2-group of order 2j+1 and let 0 < k < 2j−1 be
odd. Then Im(σG,K1 ) = Im(σG,Kk ). �

Definition 3.8. Let G be an ANC group and let K be a field of characteristic zero.

(i) Let G be cyclic of order n. Define G(K) := 〈ζn〉 6 GL1(EnK), regarded as an
irreducible K-linear group of degree |EnK : K|.

(ii) Let G be non-abelian. Write m = |G2′ |. Let W denote the EmK-space on which
G2 acts via σG2,EmK

1 . Define

G(K) :=
〈

Im
(
σG2,EmK

1

)
, ζm · 1W

〉
6 GL(W ),

regarded as an irreducible K-linear group of degree |W : K|.

Note that G ∼= G(K).

4 A first characterisation of primitivity of G(K)

Let K ⊂ Q̄ be a subfield.

Lemma 4.1. Cn(K) is primitive if and only if |EnK : En/pK| 6= p for each prime p | n.

Proof. Let G = Cn(K). By [18, Cor. 4.5, Prop. 5.1], G is primitive if and only if
|K[G] : K[H]| 6= p for every maximal subgroup H < G of prime index p. The claim
follows since the towers K[G]/K[H]/K and EnK/En/pK/K are isomorphic. �

It is well-known (see [18, Lem. 4.3]) that for a linear group to be primitive it is necessary
that every subgroup of index 2 is irreducible. As a first step towards characterising
primitivity of a non-abelian group G(K), we now consider irreducibility of its cyclic
maximal subgroups.
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Lemma 4.2. Let G be a non-abelian ANC group of order 2n. Let A / G(K) be a cyclic
subgroup of index 2. Let ◦=+ if G2 is dihedral or generalised quaternion and let ◦=− if
G2 is semidihedral.

(i) A is homogeneous if and only if
√
−1 6∈ E◦nK.

(ii) Let A be homogeneous. Then A is irreducible if and only if ϑ(G) = 1 or x2+y2 = −1
is soluble in E+

nK.

Proof. Write n = 2jm for odd m. It follows from the construction of G(K) in §3 that
K[A] ∼=K K[a, b], where a = diag(ζ

2j
, δ(G)ζ−1

2j
) ∈ GL2(EnK) and b = diag(ζm, ζm) ∈

GL2(EnK); note that the K-isomorphism type of K[a, b] does not depend on whether
the faithful irreducible EnK-representation %G2,EmK

1 of G2 used in the construction of
σG2,EmK

1 is rewritten over E◦nK (which amounts to conjugation by a suitable element
of GL2(EnK)). In particular, K[A] ∼=K (E◦nK)[a]. The minimal polynomial of a over
E◦nK is X2− (ζ

2j
+ δ(G)ζ−1

2j
)X + δ(G). Thus, K[A] is a field if and only if ζ2j 6∈ E◦nK or,

equivalently, EnK 6= E◦nK. As En = E◦n(
√
−1), this is equivalent to

√
−1 6∈ E◦nK which

proves (i). Let A be homogeneous. The degree of G(K) is then 2`−1|EnK : K|, where
` is the Schur index of %G2,EmK

1 over EmK. Thus, A is irreducible if and only if ` = 1
which happens precisely under the given conditions by Lemmas 3.4–3.5. �

Remark 4.3. Note that A in Lemma 4.2 is uniquely determined unless G2
∼= Q8 in

which case irreducibility of A implies that of the other two cyclic subgroups of index 2
of G (see also [18, Lem. 8.1]).

By a prime of a number field K, we mean a non-zero prime ideal of its ring of integers.
Let p be a prime of K and let p be the underlying rational prime. Then we let Kp denote
the p-adic completion of K; it is a finite extension of the field Qp of p-adic numbers. The
following variation of a result from [18] characterises primitivity of G(K).

Proposition 4.4. Let G be a non-abelian ANC group of order 2n, where n = 2jm and
m is odd. Let K ⊂ Q̄ be a subfield. Suppose that a cyclic subgroup of index 2 of G(K) is
irreducible.

(i) Let G2 be dihedral or semidihedral or let |G2| > 16. Then G(K) is primitive if and
only if |EnK : En/pK| 6= p for all primes p | n.

(ii) Let G2
∼= Q8. Then G(K) is primitive if and only if |EnK : En/pK| 6= p for all

odd primes p | n (that is, for all primes p | m).

(iii) Let G2
∼= Q16 and let K be a number field. Then G(K) is primitive if and only

if the following two conditions are satisfied: (a) |EnK : En/pK| 6= p for all odd
primes p | n. (b) If ord (2 mod m) · |Kp : Q2| is even for all primes p | 2 of K, then
|EnK : En/2K| 6= 2.

Proof. If A denotes a cyclic subgroup of index 2 of G as in [18] and p | n, then |K[A] :
K[Ap]| = |EnK : En/pK|. All claims now follow from [18, §8.4] and [18, Cor. 7.4,
Lem. 8.3–8.4] or, equivalently, by using [18, Alg. 9.1] to test primitivity of G(K). �
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Remark 4.5. It is claimed in [18, §8] that a maximal subgroup H of a non-abelian ANC
group G is itself an ANC group. This is not correct: since D8 is a maximal subgroup
of D16 and SD16, the group H might also be of the form D8×Cm for odd m ∈ N.
Subsequent arguments in [18, §8] then apply results from [18, §7] which are stated for
non-abelian ANC groups only. Apart from the incorrect assertion that H is necessarily
an ANC group, this reasoning is sound since all results in [18, §7] remain valid verbatim
if, in addition to non-abelian ANC groups, we also allow groups of the form G = D8×Cm

for odd m ∈ N and if we also define ϑ(G) = δ(G) = 1, extending Definition 3.2.

For fixed G and K, Lemma 4.2 and Proposition 4.4 together allow us to decide
primitivity of G(K). In the following, let K be fixed. Then, if we test conditions such
as “
√
−1 ∈ E±nK” or “|EnK : En/pK| = p” on a case-by-case basis, it remains unclear

precisely for which ANC groups G, the linear group G(K) is primitive. In particular, we
cannot yet answer questions of the following type: is (D16×Cm)(K) primitive for any
odd m ∈ N? A global picture of all the primitive groups G(K) for fixed K which allows
us to answer such questions will be provided by Theorem 6.4.

5 Relative cyclotomic extensions: the invariants κK and κ±K
Throughout, let K ⊂ Q̄ be a subfield. Recall the notation for cyclotomic fields from §2.

Definition 5.1. Let ◦ ∈ {+,−, }. Let D◦K(n) =
{
d ∈ N : K ∩En ⊂ E◦d

}
and define

κ◦K : N→ N ∪ {0}, n 7→ gcd(D◦K(n)),

where we set gcd(∅) = 0.

Note that n ∈ DK(n) so that κK(n) | n; in contrast, κ±K(n) = 0 is possible. This
section is devoted to the study of the numerical invariants κ◦K of K. These invariants
are related to primitivity of the groups G(K) in Definition 3.8 via §4 and the following
two lemmas, to be proved in §5.2 below.

Lemma 5.2. Let n ∈ N and let p | n be prime. Then |EnK : En/pK| = p if and only if
p2 | n and p | n

κK(n) .

Note that for K = Q, Lemma 5.2 simply asserts that p = ϕ(n)
ϕ(n/p) if and only if p2 | n.

Lemma 5.3. Let n ∈ N with 4 | n. Then:

(i)
√
−1 6∈ E+

nK if and only if κ+
K(n) 6= 0.

(ii)
√
−1 6∈ E−nK if and only if (a) 2κ+

K(n) | n or (b) κ−K(n) | n and 2κ−K(n) - n.

If K is a number field, then K ∩En is contained in the maximal abelian subfield Kab of
K. By the Kronecker-Weber theorem [11, Thm 5.10], there exists c ∈ N with Kab ⊂ Ec;
the smallest possible value of c is precisely the (finite part of the) conductor of Kab.

Proposition 5.4. Let K be a number field and let ◦ ∈ {+,−, }. Let f be the conductor
of Kab. Then κ◦K(n) = κ◦K(gcd(n, f)) for all n ∈ N.

Proof. K ∩En = K ∩En ∩Ef = K ∩E(n,f). �
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5.1 The sets D◦K(n)

In preparation for proving Lemmas 5.2–5.3, we now study the sets D◦K(n) and their
relationships with the κ◦K(n). Let D◦K(n; i) = {d ∈ D◦K(n) : d ≡ i mod 2}. The following
will be proved at the end of this subsection.

Proposition 5.5. Let K ⊂ Q̄ be a subfield and let n ∈ N.

(i) Let ◦ ∈ {+,−, } and D◦K(n) 6= ∅. Then D◦K(n) ⊂ κ◦K(n) ·N and κ◦K(n) is the
least element of D◦K(n). If ◦ 6= −, then D◦K(n) = κ◦K(n) ·N and κ◦K(n) | n.

(ii) If d ∈ D−K(n), then (d, n) ∈ D−K(n) or 2(d, n) ∈ D−K(n).

(iii) DK(n; 1) = D±K(n; 1).

(iv) Let D+
K(n) = ∅ but D−K(n) 6= ∅. Then 8 |κ−K(n) and D−K(n) = κ−K(n) · (2N − 1).

Furthermore, κ−K(n) = gcd
(
d ∈ D−K(n) : d | n

)
.

(v) Let D+
K(n) 6= ∅. Then D−K(n; 0) = 2 ·D+

K(n) ⊂ D+
K(n; 0). If κ+

K(n) is even, then
κ−K(n) = 2κ+

K(n); otherwise, D−K(n) = D+
K(n) and therefore κ−K(n) = κ+

K(n).

Remark 5.6. Let K be a number field and ◦ ∈ {+,−, }. Using Proposition 5.5(i)–(ii),
in order to test if D◦K(n) is empty, it suffices to test if some divisor of 2n belongs to
it. If D◦K(n) 6= ∅, then the precise value of κ◦K(n) can be computed using Proposi-
tion 5.5(i),(iv),(v). By Proposition 5.4, it suffices to compute κ◦K(n) for the divisors of
the conductor of Kab. It follows that a finite computation suffices to determine κ◦K .

In order to derive Proposition 5.5, we consider intersections involving the fields E±n
from §2. Let j > 3. The three involutions in Gal(E2j/Q) ∼= (Z/2j)× are ζ2j 7→ −ζ2j

,
ζ2j 7→ ζ−1

2j
, and ζ2j 7→ −ζ−1

2j
with corresponding fixed fields E

2j−1 , E+
2j

= E
2j
∩R, and

E−
2j
, respectively. By considering the subgroup lattice of (Z/2j)×, the subfields are seen to

be arranged as in Figure 1. Using Gal(Ers/Q) ∼= Gal(Er/Q)×Gal(Es/Q) for (r, s) = 1,
we can then read off the following.

Lemma 5.7. Let n,m ∈ N. Then:

(i) E+
n ∩E+

m = E+
n ∩Em = E+

(n,m).

(ii) E+
n ∩E−m =

{
E+

(n,m)/2, 0 < ν2(m) 6 ν2(n)

E+
(n,m), otherwise.

(iii) E−n ∩E−m =

{
E+

(n,m)/2, 0 6= ν2(n) 6= ν2(m) 6= 0

E−(n,m), otherwise.

(iv) En ∩E−m =

{
E−(n,m), ν2(n) > ν2(m)

E+
(n,m), otherwise.

�
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E2j

E+
2j

E−
2j

E2j−1

E+
2j−1 E8

E+
8 E−8 E4

Q

Figure 1: The subfield lattice of E2j for j > 3

Proof of Proposition 5.5. We freely use Lemma 5.7.

(i) Let ◦ ∈ {+,−, } and d, e ∈ D◦K(n). Then K∩En ⊂ E◦d∩E◦e ⊂ E◦(d,e) and therefore
(d, e) ∈ D◦K(n). Since κ◦K(n) = gcd(F ) for some finite F ⊂ D◦K(n), we conclude
that κ◦K(n) ∈ D◦K(n) whence the first two claims follow immediately. Let ◦ 6= −.
Then E◦d ⊂ E◦e for d | e so that κ◦K(n) ·N ⊂ D◦K(n). Finally, if d ∈ D◦K(n), then
K ∩En ⊂ E◦d ∩En = E◦(d,n) whence (d, n) ∈ D◦K(n) and the final claim follows.

(ii) K ∩En ⊂ E−d ∩En which is either equal to E−(d,n) or to E+
(d,n) ⊂ E−2(d,n).

(iii) Ed = E±d for odd d ∈ N.

(iv) Let d, e ∈ D−K(n). Then K ∩ En ⊂ E−d ∩ E−e and E−d ∩ E−e 6= E+
f for any

f ∈ N whence ν2(d) = ν2(e) > 3. Thus, (d, e) ∈ D−K(n) and we conclude that
κ−K(n) ∈ D−K(n) (by (i)) is divisible by 8 and D−K(n) = κ−K(n) · (2N− 1). Finally,
if d ∈ D−K(n), then K ∩ En ⊂ En ∩ E−d = E−(n,d) since D+

K(n) = ∅. Hence,
(d, n) ∈ D−K(n).

(v) Write e = κ+
K(n) and let d ∈ D−K(n; 0). Then K ∩ En ⊂ E−d ∩ E+

e = E+
f , where

f = (d, e)/2 if ν2(e) > ν2(d) and f = (d, e) otherwise. By (i) and since d is even,
f = e | d and ν2(d) > ν2(e). Therefore, 2e | d and hence D−K(n; 0) ⊂ 2κ+

K(n) ·N =
2D+

K(n) by (i). Conversely, let d ∈ N with 2e | d. ThenK∩En ⊂ E+
e ⊂ E+

d/2 ⊂ E−d
whence 2D+

K(n) ⊂ D−K(n; 0). The final claims now follow using (i) and (iii). �

5.2 Proofs of Lemmas 5.2–5.3

Lemma 5.8. Let d, n ∈ N, d | n, and let L ⊂ Ed be a subfield. Then the restriction map
Gal(EnK/LK)

%−→ Gal(En/L) is injective. It is surjective if and only if K ∩En ⊂ L.
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Proof. Let G = Gal(Q̄/Q), U = Gal(Q̄/K) 6 G, N = Gal(Q̄/En) / G, and M =
Gal(Q̄/L) / G. By Galois theory, we obtain a commutative diagram

(U ∩M)/(U ∩N) //

∼=
��

M/N

∼=
��

Gal(EnK/LK)
% // Gal(En/L)

where all maps are the natural ones. The top map factors as

(U ∩M)/(U ∩N)
∼=−→ (U ∩M)N/N ↪→M/N

whence % is injective. By Dedekind’s modular law [15, 1.3.14], we have (U ∩M)N =
UN ∩M . Hence, % is surjective if and only if M 6 UN or, equivalently, K ∩En ⊂ L. �

Corollary 5.9. Let d, n ∈ N with d | n, let ◦ ∈ {+,−, }, and let Gal(EnK/E
◦
dK)

%−→
Gal(En/E

◦
d) be the (necessarily injective) restriction map.

(i) If ◦ ∈ {+, }, then % is surjective if and only if κ◦K(n) | d.

(ii) If ◦ = −, then % is surjective if and only if one of the following conditions is
satisfied:

(a) 2κ+
K(n) | d if d is even or κ+

K(n) | d if d is odd.

(b) κ+
K(n) = 0, κ−K(n) | d, and 2κ−K(n) - d.

Proof. Using Lemma 5.8 with L = E◦d, the map % is surjective if and only if d ∈ D◦K(n).
Part (i) thus follows from Proposition 5.5(i). For (ii), let ◦ = − and note that (a) and (b)
are mutually exclusive. Let κ+

K(n) 6= 0. By Proposition 5.5(v), D−K(n) consists of those
multiples of κ+

K(n) which are odd (if any) and arbitrary multiples of 2κ+
K(n). Hence,

d ∈ D−K(n) is equivalent to (a). If κ+
K(n) = κ−K(n) = 0, then neither (a) nor (b) can be

satisfied and % is not surjective since D−K(n) = ∅. Finally, let κ+
K(n) = 0 6= κ−K(n) so

that Proposition 5.5(iv) applies. In particular, 8 | κ−K(n) and d ∈ D−K(n) if and only if
κ−K(n) | d and d/κ−K(n) is odd. The latter condition can be replaced by 2κ−K(n) - d. �

Proof of Lemma 5.2. If p2 - n, then |EnK : En/pK| 6 |En : En/p| = p−1 so let p2 | n. As
κK(n) | n by Proposition 5.5(i), the claim follows from Corollary 5.9(i) with d = n/p. �

Proof of Lemma 5.3. First, En = E±n (
√
−1) 6= E±n since 4 | n. Thus,

√
−1 6∈ E±nK if and

only if |EnK : E±nK| = 2 or, equivalently, restriction Gal(EnK/E
±
nK)→ Gal(En/E

±
n ) is

surjective. By Proposition 5.5(i), if κ+
K(n) 6= 0, then κ+

K(n) | n. Now apply Corollary 5.9
with d = n. This proves (i) and also (ii) if we add the condition “κ+

K(n) = 0” to (b) in
Lemma 5.3. To complete the proof, we show that in Lemma 5.3, if (b) is satisfied and
κ+
K(n) 6= 0, then (a) is satisfied too. By Proposition 5.5(v), κ−K(n) = 2κ+

K(n) if κ+
K(n) is

even and κ−K(n) = κ+
K(n) otherwise. If κ+

K(n) were odd, then, since κ−K(n) | n, we would
have 2κ−K(n) | n, contradicting (b). Thus, κ+

K(n) is even and κ−K(n) = 2κ+
K(n) | n

which establishes (a). �
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6 Characterising primitivity of G(K) using κK and κ±K
In this section, given a number field K, we derive arithmetic conditions which characterise
those ANC groups G such that G(K) (Definition 3.8) is primitive. Our description depends
on G and invariants of K, in particular the κ◦K introduced and studied in §5.
Recall that a supernatural number is a formal product a =

∏
p p

np indexed by
primes with np ∈ N ∪ {0,∞}, see e.g. [23, §2.1]; we write νp(a) = np. Every natural
number is a supernatural number and divisibility of natural numbers naturally extends
to the supernatural case.

Definition 6.1. For a supernatural number a, let

â = a ·
∏{

p prime : νp(a) = 0
}

= lcm(a, 2, 3, 5, 7, 11, . . . ).

We will use supernatural numbers to concisely encode notions of generalised “square-
freeness”. For instance, note that d ∈ N is square-free if and only if d | 1̂.

Lemma 6.2. Let n ∈ N. Then |EnK : En/pK| 6= p for every prime p with p | n if and

only if n | κ̂K(n).

Proof. For d ∈ N with d | n, it is easy to see that n | d̂ if and only if p - nd for every prime
p with p2 | n. Setting d = κK(n), the claim follows from Lemma 5.2. �

Corollary 6.3. For a number field K, Cn(K) is primitive if and only if n | κ̂K(n).

Proof. Combine Lemmas 4.1 and 6.2. �

The following is one of the main results of the present article.

Theorem 6.4. Let G be a non-abelian ANC group of order 2n, where n = 2jm (j > 2)
and m is odd. Let K be a number field. Let κK ,κ

±
K : N→ N∪{0} be as in Definition 5.1.

Define â as in Definition 6.1.

(i) If G2 is dihedral, then G(K) is primitive if and only if κ+
K(n) 6= 0 and n | κ̂K(n).

(ii) Let G2 be semidihedral. Then G(K) is primitive if and only if κ−K(n) | n and
n | κ̂K(n).

(iii) Let G2 be generalised quaternion with |G2| > 16. Then G(K) is primitive if and
only if κ+

K(n) 6= 0, n | κ̂K(n), and, in addition, K is totally imaginary or m > 1.

(iv) If G2
∼= Q8, then G(K) is primitive if and only if κ+

K(n) 6= 0, m | κ̂K(m),
ord (2 mod m) · |Kp : Q2| is even for all primes p | 2 of K and, finally, K is totally
imaginary or m > 1.

(v) Let G2
∼= Q16. Then G(K) is primitive if and only if the following conditions are

satisfied:
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• κ+
K(n) 6= 0.

• m | κ̂K(m).

• K is totally imaginary or m > 1.

• If ord (2 mod m) · |Kp : Q2| is even for all primes p | 2 of K, then n/κK(n)
is odd.

Our proof of Theorem 6.4, given below, relies on the following.

Lemma 6.5. Let n ∈ N. Write n = 2jm, where m is odd.

(i) |EnK : En/pK| 6= p for all prime divisors p | m if and only if m | κ̂K(m).

(ii) Let 4 | n. Then |EnK : En/2K| 6= 2 if and only if n/κK(n) is odd.

(iii) ([17, §8.1].) x2 +y2 = −1 is soluble in EmK if and only if ord (2 mod m) · |Kp : Q2|
is even for all primes p | 2 of K and, in addition, K is totally imaginary or m > 1.

(iv) If 8 | n, then x2 + y2 = −1 is soluble in E+
nK if and only if K is totally imaginary

or m > 1.

Proof.

(i) By Lemmas 5.2 and 6.2, it suffices to show that if p is a prime divisor of m, then
|EnK : En/pK| = p if and only if |EmK : Em/pK| = p. To that end, by Galois
theory, r = |EnK : En/pK| divides s = |EmK : Em/pK| which in turn divides
|Epa : Epa−1 | 6 p, where a = νp(m). Hence, if r = p, then s = p. Conversely, let
s = p. Then a > 2 (otherwise, s 6 p− 1) and r ∈ {1, p}. Suppose, for the sake of
contradiction, that r = 1. Then EmK ⊂ EnK = En/pK = (Em/pK)E2j , whence s
divides t = |(Em/pK)E2j : Em/pK|. However, t divides |E2j : Q|, which is a power
of 2. This contradicts s = p and proves that r = p.

(ii) Immediate from Lemma 5.2.

(iv)
√

2 ∈ E+
nK so the local degrees in (iii) (with E+

2j
K in place of K) are even. Also,

since E+
2j

is totally real, E+
nK is totally imaginary if and only if EmK is. �

Proof of Theorem 6.4. Lemma 4.2, Remark 4.3, and Lemma 5.3 together characterise
irreducibility of the cyclic maximal subgroups of G(K) in terms of κ±K(n). In order to
derive the conditions stated in Theorem 6.4, combine Proposition 4.4, Lemma 6.2, and
Lemma 6.5. For instance, in (i), the group G(K) is primitive if and only if

√
−1 6∈ E+

nK
(Lemma 4.2) and |EnK : En/pK| 6= p for all primes p | n (Proposition 4.4(i)); these

two conditions are equivalent to κ+
K(n) 6= 0 (Lemma 5.3) and n | κ̂K(n) (Lemma 6.2),

respectively. The other cases (ii)–(v) are obtained similarly. For (ii), we also need need
the following two observations which allow us to replace the conditions in Lemma 5.3(ii)
by “κ−K(n) | n”. First, if n | κ̂K(n), then 2κ+

K(n) - n. Indeed, suppose that 2κ+
K(n) | n.

Then 2κK(n) | n and thus ν2(κK(n)) 6 ν2(n/2). As 8 | n, we obtain ν2(κ̂K(n)) 6
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ν2(n/2) < ν2(n) and so n - κ̂K(n), a contradiction. Secondly, if n | κ̂K(n) and κ−K(n) | n,
then n/κ−K(n) is necessarily odd. To that end, 8 | n implies that ν2(n) 6 ν2(κ̂K(n)) =
ν2(κK(n)) 6 ν2(n) whence n/κK(n) is odd. As κK(n) | κ−K(n) | n, we conclude that
n/κ−K(n) is odd. �

Remark 6.6. A description of the primitive p-subgroups of GLd(K) can also be deduced
from the maximal case in [12,14]. The field invariants α, β, γ used in [14] are concerned
with the inclusions of the fields E

pi
and E±

2i
in the ground field. In our approach, these

fields enter (in a different way) via the functions κK and κ±K . The latter invariants were
initially considered by the author in an attempt to describe the behaviour of α, β, and γ
under cyclotomic extensions.

7 Irreducible and primitive linear ANC groups

In this section, we put our results from §§3–6 on the particular linear groups G(K) into
the context of general irreducible and primitive linear ANC groups.

7.1 Uniqueness of irreducible realisations of ANC groups

In this subsection, let K be an arbitrary field of characteristic zero.

Theorem 7.1. Let G 6 GL(V ) and H 6 GL(W ) be irreducible linear ANC groups
over K. Suppose that G ∼= H as abstract groups. Then G and H are similar. In
particular, G and G(K) are similar.

Prior to giving a proof of Theorem 7.1, we record the following characteristic zero
analogue of [5, Thm 5.11].

Corollary 7.2. Abstractly isomorphic primitive finite nilpotent linear groups over a field
of characteristic zero are similar. �

The following is elementary.

Lemma 7.3. Let G = 〈g〉 and H be homogeneous finite linear groups over K. If G ∼= H,
then there exists a generator h ∈ H of H such that K[G] ∼= K[H] via g 7→ h.

Proof. Write m = |G| = |H|. The mth cyclotomic polynomial φm splits completely both
over K[G] and over K[H]. Let f be the minimal polynomial of g over K. Then f | φm
whence f(h) = 0 for some h ∈ K[H]. As K[H] is a field, the roots of Xm− 1 in K[H] are
precisely the elements of H. Since h is a primitive mth root of unity, we conclude that
H = 〈h〉. The map g 7→ h now induces isomorphisms G→ H and K[G]→ K[H]. �

Proof of Theorem 7.1. First, if G is cyclic, then the claim follows from Lemma 7.3. Next,
suppose that G is a non-abelian ANC 2-group. Let θ : G→ H be an isomorphism. By
Proposition 3.6, the natural representation of G is equivalent to σG,Kk for some odd k. For
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the same reason, the composite G θ−→ H ↪→ GL(W ) is equivalent to σG,Kk′ for some odd k′.
Thus, it follows from Lemma 3.7 that G and H are both similar to G(K) = Im(σG,K1 ).

Finally, let G and H be non-abelian but not necessarily 2-groups. Using Lemma 7.3,
we find a ∈ G2′ 6 Z(G) and b ∈ H2′ 6 Z(H) of order m := |G2′ | = |H2′ | such that a 7→ b

induces a K-isomorphism K[a]
φ−→ K[b]. We may then regard both G and H as Z-linear

groups, where Z := K[a] acts on W via φ. We see that G2 and H2 are isomorphic
irreducible Z-linear ANC 2-groups. By using what we have proved above with Z in place
of K, we see that there exists a Z-isomorphism V

t−→W with t−1G2t = H2. In particular,
|V : K[a]| = |W : K[b]|. Since a and b have the same (irreducible) minimal polynomial
over K, we obtain s−1as = b for some K-isomorphism V

s−→ W . Now replace G by
s−1Gs. Repeating the above steps with V = W , G2′ = H2′ , a = b, and φ = 1, we obtain
t−1G2t = H2. Since t−1at = b = a by Z-linearity of t, we conclude that t−1Gt = H. �

7.2 The number of primitive ANC groups of a given degree

Proposition 7.4. Let K/Q be a finitely generated field extension and let ε > 0. The
number of conjugacy classes of primitive finite nilpotent subgroups of GLd(K) is O(d1+ε).

Proof. Let ψ(n) = |EnK : K|. As shown in the proof of [17, Lem. 5.4], there exists C > 0
such that ψ(n) 6 n 6 C ·ψ(n)1+ε for all n ∈ N. The conjugacy classes of irreducible
finite cyclic subgroups of GLd(K) correspond precisely (via n 7→ Cn(K)) to the solutions
n ∈ N of ψ(n) = d and for such a solution, n 6 Cd1+ε. Let G 6 GLd(K) be a non-abelian
irreducible ANC group of order 2n. Given n, there are at most 3 different isomorphism
classes of such groups and therefore at most that many conjugacy classes of irreducible
realisations of these groups in GLd(K). Given G and n, the construction of G(K) in §3
and Theorem 7.1 show that either d = ψ(n) or d = 2ψ(n). By the above estimate, the
number of solutions n ∈ N of either equation is O(d1+ε). �

It is natural to ask for the precise number of conjugacy classes of primitive finite
nilpotent subgroups of GLd(K). Even for K = Q, this problem is related to challenging
number-theoretic questions. Indeed, denoting Euler’s totient function by ϕ, Theorem 8.1(i)
below provides us with a bijection between square-free numbers n ∈ N with ϕ(n) = d
and conjugacy classes of primitive finite cyclic subgroups of GLd(Q); for the problem of
enumerating solutions n of ϕ(n) = d, see e.g. [2, 8].

7.3 Primitive realisations of arbitrary abstract ANC groups

Corollary 6.3 and Theorem 6.4 characterise primitivity of G(K) for fixed K and varying
G in terms of the κ◦K . Regarding the case of a fixed G, we observe the following.

Proposition 7.5. Let G be an ANC group. Then there exists an abelian number field K
such that G(K) is primitive.

Proof. This is largely a consequence of Lemma 4.2 and Proposition 4.4 which we both
use freely. First, Cn(En) is trivially primitive. Let n = 2jm for j > 2 and odd m ∈ N.
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Then
√
−1 6∈ E±n . If p is a prime divisor of n, then En = En/pE

±
n , unless p = j = 2.

It follows that (D2j+1 ×Cm)(E+
n ) and (SD2j+1 ×Cm)(E−n ) are primitive for j > 3. By

Lemma 6.5(iv), if j > 2, then (Q2j+1 ×Cm)(E+
n`) is primitive for any odd ` > 1 such that

ord (2 mod `) is even; there are infinitely many such `, cf. Remark 8.4 below. �

8 Applications

8.1 Cyclotomic fields

We apply the results from §6 to give a precise description of those ANC groups G such
that G(Er) is primitive. Since Er = E2r for odd r, we may assume that r 6≡ 2 mod 4.

Theorem 8.1. Let r 6≡ 2 mod 4. Recall that Er denotes the rth cyclotomic field. Define
â as in Definition 6.1. A complete list (up to isomorphism) of those ANC groups G such
that G(Er) is primitive is given by the following.

(i) Cn, where n | r̂.

(ii) Q8×Cm, where m and r are odd, m | r̂, rm > 1, and ord (2 mod rm) is even.

(iii) Q16×Cm, where m and r are odd, m | r̂, rm > 1, and ord (2 mod rm) is odd.

The following will be used in the proof of Theorem 8.1.

Lemma 8.2 (Cf. [7, Thm 3]). Let m ∈ N be odd. Then ord(2 mod m) is even if and
only if ord(2 mod p) is even for some prime p | m.

Corollary 8.3. Let m1,m2 ∈ N both be odd. Then ord(2 mod m1m2) ≡ ord(2 mod
m1) · ord(2 mod m2) mod 2. �

Proof of Theorem 8.1. For n ∈ N, we have κEr(n) = (r, n) if (r, n) ≡ 0, 1, 3 mod 4 and
κEr(n) = (r, n)/2 if (r, n) ≡ 2 mod 4; in particular, κ̂Er(n) = (̂r, n). Also,

κ±Er
(n) =


(r, n), (r, n) ≡ 1, 3 mod 4,

(r, n)/2, (r, n) ≡ 2 mod 4,

0, (r, n) ≡ 0 mod 4.

Given a, b ∈ N, it is easy to see that a | (̂a, b) if and only if a | b̂. The cyclic case (i) now
follows from Corollary 6.3. Since 4 | n in Theorem 6.4, κ±Er

(n) 6= 0 (which is equivalent

to 4 - r) and n | κ̂Er(n) (which is equivalent to n | r̂) cannot both be satisfied. This rules
out primitivity of the groups in Theorem 6.4(i)–(iii). Let G2

∼= Q8. By Theorem 6.4(iv)
in order for G(Er) to be primitive it is necessary that r is odd (recall that r 6≡ 2 mod 4),
m | r̂, and rm > 1. The degree of the rth cyclotomic field over Q2 is ord(2 mod r),
see e.g. [1, Prop. 3.5.18]. Together with Corollary 8.3, this yields the conditions in (ii).
Finally, let G2

∼= Q16. Again, by Theorem 6.4, for G(K) to be primitive, it is necessary
that r is odd, rm > 1, and r | m̂. In particular, κEr(n) = (n, r) whence n/κEr(n) is
even and ord(2 mod rm) has to be odd, leading to the given conditions. �
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Remark 8.4. It is shown in [7, Thm 5] that the set of odd primes p such that ord (2 mod
p) is even has Dirichlet density 17/24. In view of Corollary 8.3, even if ord (2 mod r) is
odd, the case (iii) in Theorem 8.1 is thus still rare.

8.2 Quadratic fields

Theorem 8.5. Let d ∈ Z be square-free with d 6= 1. Let f be the conductor of Q(
√
d)

or, equivalently, the absolute value of the discriminant of Q(
√
d)/Q. Define â as in

Definition 6.1. A complete list (up to isomorphism) of those ANC groups G such that
G(Q(

√
d)) is primitive is as follows.

(i) Cn, where n ∈ N is square-free or f | n | f̂.

(ii) D16×Cm, where d ≡ 2 mod 8 and m ∈ N is odd and square-free with d | 2m.

(iii) SD16×Cm, where d ≡ 6 mod 8 and m ∈ N is odd and square-free with d | 2m.

(iv) Q8×Cm for odd and square-free m ∈ N subject to the following conditions:

• If d > 0, then m > 1.

• If d ≡ 1 mod 8, then ord(2 mod m) is even.

• If d ≡ 3 mod 4, then d - m.

(v) Q16×Cm for odd and square-free m ∈ N such that m > 1 if d > 0 and one of the
following (mutually exclusive) conditions is satisfied:

• d ≡ 1 mod 8 and ord(2 mod m) is odd.

• d ≡ 2 mod 8 and d | 2m.

In preparation for our proof of Theorem 8.5, we first determine the invariants κ◦K for
these fields. By Proposition 5.4, it suffices to evaluate these functions at divisors of the
conductor of the field in question.

Lemma 8.6. Let d ∈ Z be square-free with d 6= 1. Let f ∈ N be the conductor of Q(
√
d).

Then:

(i) If n ∈ N is a proper divisor of f, then κ
Q(
√
d)

(n) = κ±
Q(
√
d)

(n) = 1.

(ii) κQ(
√
d)(f) = f.

(iii) κ±
Q(
√
d)

(f) ∈ {0, f, 2f} as indicated in the following table:

d mod 8 f κ+

Q(
√
d)

(f) κ−
Q(
√
d)

(f)

1, 5 |d| f f
3, 7 4|d| 0 0
2 4|d| f 2f
6 4|d| 0 f
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Proof. Let K = Q(
√
d). Let D be the discriminant of K. It is well-known [1, Prop. 3.4.1]

that D = d if d ≡ 1 mod 4 and D = 4d otherwise. Moreover, f = |D|, see [11, Cor. VI.1.3].
Parts (i)–(ii) follow since K ⊂ En if and only if f | n; otherwise, K ∩En = Q.
Let d ≡ 1 mod 4. Then f = |d| and K ⊂ Ef = E±f . For r ∈ N, if K ⊂ E±r , then

K ⊂ Er and thus f | r. We conclude that κ±K(f) = f.
Let d ≡ 3 mod 4. Suppose that K ⊂ E±r for r ∈ N. Then K ⊂ E±r ∩ Ef = E(r,d)

which contradicts the fact that f = 4|d| is minimal subject to K ⊂ Ef. Hence, κ±K(f) = 0.
Let d = 2a for a ≡ 1 mod 4. As E+

8 = Q(
√

2) and
√
a ∈ E|a|, we have K ⊂ E+

f ⊂ E−2f.
If r ∈ N with K ⊂ E+

r , then K ⊂ E+
r ∩ E+

f ⊂ E(r,f) whence f | r. Thus, κ+
K(f) = f.

Next, if K ⊂ E−r for r ∈ N, then ν2(r) > ν2(f) and K ⊂ E+
f ∩E−r = E−(r,f) for otherwise

K ⊂ E+
(r,f)/2 (see Lemma 5.7), contradicting κ+

K(f) = f. Since K ⊂ E−(r,f) ⊂ E(r,f), we
conclude that f | r and thus even 2f | r. It thus follows that κ−K(f) = 2f.
Finally, let d = 2a and a ≡ 3 mod 4. Then ±

√
d =

√
−2
√
−a ∈ E−8 E|a| = E−f . If

r ∈ N with K ⊂ E−r , then ν2(r) = ν2(f) and K ⊂ E−r ∩E−f = E−(r,f) since all other cases
in Lemma 5.7(iii) would contradict the minimality of f. Hence, f | r and we conclude
that κ−K(f) = f. Suppose that r ∈ N with K ⊂ E+

r . Then K ⊂ E+
r ∩E−f ⊂ E+

f and thus
K ⊂ E+

f ∩E−f = E|a| which contradicts the minimality of f. Therefore, κ+
K(f) = 0. �

The local degrees related to quaternion groups in Theorem 6.4 are easily determined.

Lemma 8.7 (Cf. [7, Thm 7]). Let d ∈ Z be square-free with d 6= 1. Let p be a prime of
K = Q(

√
d) lying above 2. Then Kp = Q2 if and only if d ≡ 1 mod 8.

Proof. If d 6≡ 1 mod 4, then K has even discriminant whence 2 ramifies. If, on the other
hand, d ≡ 1 mod 4, then 2 splits if and only if d ≡ 1 mod 8, see e.g. [1, Prop. 3.4.3]. �

Proof of Theorem 8.5. For n ∈ N, Lemma 8.6(i) implies that n | κ̂K(n) if and only if n
is square-free or f | n | f̂ whence (i) follows from Corollary 6.3. Let G be a non-abelian
ANC group of order 2n, where n = 2jm for odd m and j > 2. Write d = 2εa for odd
a ∈ Z and ε ∈ {0, 1}. Let K = Q(

√
d). We freely use Theorem 6.4.

Since n is not square-free (indeed, 4 | n), the condition n | κ̂K(n) is equivalent to
f | n | f̂. A necessary condition for that is 4 | f or, equivalently, d 6≡ 1 mod 4. Next, if f | n,
then κ+

K(n) 6= 0 is equivalent to d ≡ 1, 2, 5 mod 8. We conclude that both n | κ̂K(n) and
also κ+

K(n) 6= 0 if and only if f | n | f̂ and d ≡ 2 mod 8. In that case, f = 8|a| whence
ν2(n) = 3 is necessary. This proves (ii) and also shows that G(K) is never primitive if
G2 is generalised quaternion with |G2| > 16.
Suppose that G2 is semidihedral. We can assume that f | n | f̂ and rule out the case

d ≡ 1 mod 4 as above. If d ≡ 2 mod 8, then, analogously to the dihedral case, G2
∼= SD16

is necessary for G(K) to be primitive. However, in that case κ−K(n) = 2f = 8d cannot
divide n = 8m. This leaves the case d ≡ 6 mod 8 and the conditions stated in (ii).
In order to deal with the remaining cases G2

∼= Q8 and G2
∼= Q16, first note that for

odd m ∈ N, the condition m | κ̂K(m) is equivalent to m being square-free. Indeed, if
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d ≡ 1 mod 4, then f = |d| is itself square-free whence κ̂K(n) = 1̂ for all n ∈ N. If, on the
other hand, d 6≡ 1 mod 4, then 4 | f and κK(m) = 1 for odd m ∈ N.

Now let G2
∼= Q8. Then G(K) is primitive if and only if m is square-free, the conditions

in the first two bullet points are satisfied (for the second one, use Lemma 8.7), and
κ+
K(4m) 6= 0. By Lemma 8.6(iii), the latter condition is certainly satisfied whenever

d ≡ 1 mod 4 or d ≡ 2 mod 8. If d ≡ 3 mod 4, then κ+
K(n) = 0 if and only if d | m which

gives the third bullet point. If d ≡ 6 mod 8, then κ+
K(n) = 1 since f = 8|a| - 4m = n.

Finally, let G2
∼= Q16. As in the preceding case, we may assume that m is square-free

and that m > 1 if d > 0. By the second paragraph of this proof and Lemma 6.5(i)–(ii), if
ord(2 mod m) or the local degrees |Kp : Q2| in Theorem 6.4(v) are even, then G(K) is
primitive if and only if f | n | f̂ and d ≡ 2 mod 8; by Lemma 8.7, the aforementioned local
degrees are necessarily even for d ≡ 2 mod 8. Since n = 8m, if d ≡ 2 mod 8, the second
bullet point thus characterises primitivity of G(K). Finally, it remains to consider the
situation that ord(2 mod m) and the local degrees from above are all odd, in which case
no further conditions need to be imposed. This case happens precisely when d ≡ 1 mod 8
and ord(2 mod m) is odd and thus leads to the first bullet point. �
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