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Over the past decades, zeta functions associated with algebraic counting problems have
received considerable attention. In particular, following the seminal paper [3] of Grunewald,
Segal, and Smith, the theory of subobject zeta functions evolved into a distinct branch of
asymptotic algebra.
While the initial focus in the area was on the enumeration of subgroups of finitely

generated nilpotent groups, it was already observed in [3] that the Mal’cev correspondence
all but reduces this problem to the enumeration of subalgebras of associated nilpotent
Lie algebras. More formally, let R be Z or the ring Zp of p-adic integers. Then, given a
possibly non-associative R-algebra L whose underlying R-module is free of finite rank d,
we define the subalgebra zeta function of L to be ζL(s) =

∑∞
n=1 an(L)n−s, where an(L)

denotes the number of R-subalgebras of L of additive index n and s is a complex variable.
It is easy to see that if L is a Z-algebra, then we obtain the Euler product factorisation
ζL(s) =

∏
p ζL⊗Zp(s), where p ranges over all primes. A deep result from [3], derived

using non-constructive model-theoretic techniques, asserts that each local zeta function
ζL⊗Zp(s) is a rational function in p−s. In another key paper in the area, du Sautoy and
Grunewald [2] showed that, excluding finitely many exceptional primes, the functions
ζL⊗Zp(s) can all be expressed in terms of a single formula. Specifically, they showed that
there are Q-varieties V1, . . . , Vr and rational functions W1, . . . ,Wr ∈ Q(X,Y ) such that,
for almost all primes p,

ζL⊗Zp(s) =
r∑

i=1
#V̄i(Fp)·Wi(p, p−s), (?)

where ·̄ denotes “reduction modulo p”. While their proof is constructive, it is usually
impractical due to its reliance on resolution of singularities.

This talk was devoted to describing a practical method [5] for computing a formula (?)
in favourable situations. This method combines techniques from a number of areas. In
particular, it relies on

• the formalism for expressing local subobject zeta functions in terms of p-adic integrals
from [2,3],

• results from singularity theory and toric geometry due to Khovanskii [4] and others,

• algorithms of Barvinok and others from computational convex geometry (see, in
particular, [1]), and

• ideas from the theory of Gröbner bases.



In practice, we can frequently do much better than merely producing a formula (?).
Namely, for many examples of interest, the ζL⊗Zp(s) are “uniform” in the sense that there
exists a single rational function W ∈ Q(X,Y ) such that ζL⊗Zp(s) = W (p, p−s) for almost
all primes p; our goal is then to find W . Among other things, this involves symbolically
counting rational points on certain types of varieties.

As an application, we discussed the computation of the subalgebra zeta function of gl2(Zp)
for p � 0. We also presented the author’s “semi-simplification conjecture” [6, Conj. E]
which asserts that given a rational unital matrix algebra, the behaviour of its associated
generic local submodule zeta functions at zero only depends on the action of the largest
semi-simple quotient of the algebra.
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