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Ingredients…Ingredients…

Enumeration of matrices

Graphical groups

Class counting zeta functions

Toric geometry



…and where to find them…and where to find them

R.: The average size of the kernel of a matrix and orbits of

linear groups, 2018.

R.: The average size of the kernel of a matrix and orbits of

linear groups, II: duality, 2020.

R. & Voll: Groups, graphs, and hypergraphs: average sizes of

kernels of generic matrices with support constraints (preprint),

2019. arXiv:1908.09589

https://arxiv.org/abs/1908.09589


The GIGO principle:The GIGO principle:

“On two occasions, I have been asked […],
'Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers
come out?' I am not able to rightly
apprehend the kind of confusion of ideas
that could provoke such a question.”

— Charles Babbage

Garbage in, garbage out
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Counting matrices by rankCounting matrices by rank

ExampleExample
Let  be a -defined space of matrices.

Let  be the corresponding space of matrices over .

Then the number of matrices in  of given rank 
“depends geometrically” on .

X Z

X(F  )q F  q

X(F  )q r

q

Sketch of proof. Let  be a basis of . Then

has rank  iff all  minors of  vanish.

A  , … ,A  1 ℓ X

x  A  +1 1 ⋯ + x  A  ℓ ℓ

< r r × r x  A +1 1 ⋯ + x  A  ℓ ℓ



CorollaryCorollary

Linear algebra + rank constraints  algebraic geometry.⊂

QuestionsQuestions

How much of algebraic geometry do we get?
What happens for nice spaces of matrices?
What does this have to do with group theory?



Counting matrices by rank:Counting matrices by rank:  
polynomialitypolynomiality

TheoremTheorem
(Landsberg 1893, Carlitz 1954, MacWilliams 1969, 

Buckhiester 1972, Bender 1974)

The following types of matrices of a given shape and
given rank over  are given by polynomials in :

general rectangular,
antisymmetric,
symmetric, and
traceless.

F  q q



TheoremTheorem
(Lewis et al. 2011, Klein et al. 2014)

Similar polynomiality results, where entries in suitable
positions are required to be zero.

TheoremTheorem
(Stembridge 1998)

Mildly non-polynomial behaviour for invertible 
matrices with constrained support over .

7 × 7
F  q



Counting matrices by rank:Counting matrices by rank:  
wildernesswilderness

TheoremTheorem
(Belkale and Brosnan 2003)

Counting invertible symmetric matrices with constrained
support over  is as hard as counting -points of
schemes over .

F  q F  q

Z



DefinitionDefinition
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Higman's conjectureHigman's conjecture

ConjectureConjecture
(Higman 1960)

 is a polynomial in .k(U  (F  ))n q q



TheoremTheorem
(Vera-López and Arregi 2003, 

Pak and Soffer 2015)

Higman's conjecture is true for .n ⩽ 16

ExampleExample
k(U  (F  )) =3 q q +2 q − 1.

Related workRelated work
Polynomiality questions for other families of (unipotent)
groups: Evseev, Goodwin, Isaacs, Le, Lehrer, Magaard, ...



DefinitionDefinition
(Combine Baer 1938 and Tutte 1947)

Let  be a graph with vertices . The graphical
group   associated with  over  is generated by the
vertices  subject to the following relations:

 whenever .
Commutators are central.

Γ v  , … , v  1 n

G  (Z)Γ Γ Z
v  , … , v  1 n

v  v  =i j v  v  =j i 1 v   i ∼ v  j

ExampleExample
.G  (Z) ≈∙−∙ U  (Z)3

Graphical groupsGraphical groups
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Using commutator calculus à la P. Hall and Mal'cev,
the definition above can be extended to define a group
 

 
for each (commutative) ring .

 
This turns  into a (unipotent) group scheme which
we call the graphical group scheme associated with .

G  (R)Γ

R

G  Γ

Γ

Graphical group schemesGraphical group schemes



Graph Polynomiality TheoremGraph Polynomiality Theorem
(R. & Voll 2019)

For every graph , there exists a polynomial  such
that for each prime power ,

Γ f  (X)Γ

q

k(G  (F  )) =Γ q f  (q).Γ

ExampleExample
f  (X)Petersen = X + X + 15X + 50X − 165X16 15 14 13 12

+ 70X + 115X − 120X + 35X − X11 10 9 8 6



DefinitionDefinition
Given  with vertices , let  be the
module of alternating  matrices  over  with 

 whenever .

Γ v  , … , v  1 n M  (R)Γ

n × n [a  ]ij R

a  =ij 0 v   i ∼ v  j

PropositionProposition
(R. & Voll 2019)

Let  have  edges. Then:Γ m

k(G  (F  )) =Γ q q ⋅ average size of the kernel of a ∈ M  (F  )m
Γ q

Polynomiality isPolynomiality is
unexpected (?!)unexpected (?!)



Let  be the space of symmetric 
matrices  with  whenever .
Let  be the subset of matrices of rank .

Sym  (F  ;S)n q n × n

[a  ]ij a  =ij 0 (i, j)  ∈ S

Sym  (F  ;S)n,r q r

wildwild ==∫∫ polynomialpolynomial

Belkale & Brosnan 2004:
 is arbitrarily wild as a function of .

 
R. & Voll 2019:

 is a polynomial in .

#Sym  (F  ;S)n,r q q

#Sym  (F  ;S) q
r=0
∑
n

n,r q
n−r q



DefinitionDefinition
(du Sautoy 2004)

Let  be a group scheme (of finite type) over a ring .

The class counting zeta function of  is
 

G R

G

ζ  (s) =G
cc

 k(G(R/I)) ∣R/I∣ .
I◃R

∑ −s

Class counting zetaClass counting zeta
functionsfunctions

ExampleExample
(Berman et al. 2013, R. 2018)

ζ  (s) =U  3

cc ζ(s − 1)ζ(s − 2)/ζ(s)



Lemma (Euler product)Lemma (Euler product)
Let  be the ring of integers of a global field .

Let  be a group scheme over . Then:

O K

G O

ζ  (s) =G
cc

 ζ  (s).
v∈V  K

∏ G⊗O  v

cc

TheoremTheorem
(  du Sautoy 2004)

If , then  for each prime .
≈

O = Z ζ  (s) ∈G⊗Z  p

cc Q(p )−s p



GIGO TheoremGIGO Theorem
If  is a number field, then  "depends geometrically"
on the place  whenever  is

a Chevalley group (Berman et al. 2013) or
unipotent (R. 2018).

 
 
 
 
 
 
 

K ζ  (s)G⊗O  v

cc

v G



GIGO TheoremGIGO Theorem
If  is a number field, then  "depends geometrically"
on the place  whenever  is

a Chevalley group (Berman et al. 2013) or
unipotent (R. 2018).

 
 
 
 
 
 
 

K ζ  (s)G⊗O  v

cc

v G

For such group schemes , there are -schemes 
and  such that for almost
all ,

where  residue field of  of size .

G O V  , … ,V  1 r

W  (X,T ), … ,W  (X,T ) ∈1 r Q(X,T )
v ∈ V  K

ζ  (s) =G⊗O  v

cc
 #V  (K  )⋅W  (q  , q  ),

i=1

∑
r

i v i v v
−s

K  =v O  v q  v



QuestionQuestion

How can one explicitly compute such formulae? 
The proof for unipotent groups is constructive but impractical. 

Practical methods: R. 2016–2020. Later!

What about other group schemes?
How wild can this geometry be?

TheoremTheorem
(Ishitsuka 2017 + R. 2020)

A positive proportion of elliptic curves over  "appear"
in class counting zeta functions of unipotent groups.

Q



Uniformity TheoremUniformity Theorem
(R. & Voll 2019)

For each graph , there exists 
such that for each compact discrete valuation ring  (e.g. 
or ),

where  is the residue field size of .

 

RemarkRemark

.
Our proof is constructive and gives rise to a practical
algorithm.

Γ W (X,T ) ∈Γ Q(X,T ) ∩Q[X][[T ]]
O Z  p

F  [[z]]q

ζ  (s) =G  ⊗OΓ

cc W  (q, q ),Γ
−s

q O

W  (X,T ) =Γ 1 + f  (X)T +Γ O(T )2
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Combinatorics in,

Combinatorics in,combinatorics out!

combinatorics out!



TheoremTheorem
(R. & Voll 2019)

Functional equation: 
 

where  #vertices and  #edges
Reduced zeta function: 

Hadamard products: 

W  (X ,T ) =Γ
−1 −1 −X T ⋅W  (X,T ),n+m

Γ

n = m =

W  (1,T ) =Γ 1/(1 − T )

W  (X,T ) =Γ⊕Γ′ W  (X,T )★W  (X,T )Γ Γ′

A new (?) graph invariantA new (?) graph invariant

QuestionQuestion
What does  tell us about ?W  (X,T )Γ Γ



DefinitionDefinition
Cographs are recursively defined as follows:

A graph consisting of a single vertex is a cograph.
If  and  are cographs, then so are their disjoint
union  and join .

Γ Γ′

Γ ⊕ Γ′ Γ ∨ Γ′

CographsCographs
 

Theorem
(Corneil, Lerchs, Stewart Burlingham 1981)

A graph is a cograph iff it does not contain a path on
four vertices as an induced subgraph.





TheoremTheorem
(R. & Voll 2019)

Let  be a cograph with  vertices and  edges.

Explicit formula for  in terms of weak
orders on  symbols.
The abscissa of convergence of  is an integer.
For each compact DVR , the real part of each pole
of  is an integer.

Γ n m

W  (X,T )Γ

n

ζ  (s)G  Γ

cc

O

ζ  (s)G  ⊗OΓ

cc

Questions:Questions:

What do these integers mean?
What happens for general graphs?



Behind the scenesBehind the scenes
Sketch of proof of the Uniformity TheoremSketch of proof of the Uniformity Theorem

Uniformity TheoremUniformity Theorem
Given , there exists  with  for ...Γ W  (X,T )Γ ζ  (s) =G  ⊗OΓ

cc W  (q, q )Γ
−s

IngredientsIngredients

Linearisation.
Average sizes of modules.
Knuth duality.
Adjacency modules.
Toric geometry.



Lemma (Burnside?)Lemma (Burnside?)
Let  be a finite group. ThenG

k(G) =   ∣C  (g)∣.
∣G∣
1

g∈G

∑ G

Linearising class countingLinearising class counting

If  admits a good Lie theory, then this lemma
linearises.
For example, centralisers become kernels.

G



DefinitionDefinition
Let  and let  be an -module.
Define

X = (X  , … ,X  )1 n M(X) O[X]

ζ  (s) :M(X) =  M(x) ⊗ O/y ⋅ ∣y∣ dμ(x, y).

O ×On

∫ ∣ ∣ s

Zeta functions of modulesZeta functions of modules

TheoremTheorem
(Lins 2019, R. 2020)

Let  be a unipotent group scheme. Let  be a
"commutator matrix" of . Then, generically,

G A(X)
Lie(G)

ζ  (s) ∼G⊗O
cc ζ  (s).Coker(A(X)⊗O[X])



Choose a presentation .
Goal: control the size of specialisations of  over
quotients of . Easy if  is in “Smith normal form”!
Morally: use resolution of singularities to determine all
SNFs of specialisations of . Usually impractical!
If we are lucky, we can use methods from toric geometry
instead. Implemented in my package  for SageMath: 

M(X) ≈ Coker(A(X))

M(X)

O A(X)

A(X)

Zeta

http://www.maths.nuigalway.ie/~rossmann/Zeta/

Computing Computing  (sketch) (sketch)ζζ   ((ss))MM((XX))

http://www.maths.nuigalway.ie/~rossmann/Zeta/
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SNFs of specialisations of . Usually impractical!
If we are lucky, we can use methods from toric geometry
instead. Implemented in my package  for SageMath: 
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For graphical groups,
we can do much better!

http://www.maths.nuigalway.ie/~rossmann/Zeta/


Combinatorial Uniformity LemmaCombinatorial Uniformity Lemma
(R. & Voll 2019)

Let  be a combinatorial -module in the sense that

 

 
for monomial ideals .

Then there exists  s.t.

 

 
for each compact DVR  with residue field size .

M(X) Z[X]

M(X) = Z[X]/I  ⊕1 ⋯ ⊕ Z[X]/I  ℓ

I  , … , I  1 ℓ

W (X,T ) ∈ Q(X,T )

ζ  (s) =M(X)⊗O[X] W (q, q )−s

O q



DefinitionDefinition

Let  be a matrix of linear forms.

The Knuth duals of  are obtained by "shuffling
the indices" .

A(X) =  a  X  [
k

∑ ijk k]
A(X)

i, j, k

TheoremTheorem
(R. 2020)

Let  be a Knuth dual of . ThenB(Y ) A(X)

ζ  (s) ∼CokerA(X) ζ  (s).CokerB(Y )

Knuth dualityKnuth duality



DefinitionDefinition
Let  be a graph with vertices . Write .

The adjacency module of  is

Γ 1, … ,n X = (X  , … ,X  )1 n

Γ

Adj(Γ) =  .
X  e  − X e  : i ∼ j in Γ⟨ i j j i ⟩

Z[X]n

PropositionProposition
(R. & Voll 2019)

ζ  (s) ∼G  ⊗OΓ

cc ζ  (s)Adj(Γ)⊗O[X]

Adjacency modulesAdjacency modules



TheoremTheorem
(R. & Voll 2019)

Given , there exists a fan  with support  such
that  is combinatorial for each .

Γ F F =⋃ R  ⩾0
n

Adj(Γ) ⊗ Z  σ σ ∈ F

Toric geometry to the rescueToric geometry to the rescue
DefinitionDefinition
Let  be a cone.

The dual of  is 
The toric ring associated with  is 

σ ⊂ R  ⩾0
n

σ σ =∗ ω ∈ R : α ⋅ω ⩾ 0 for all α ∈ σ .{ n }
σ

Z  =σ Z[X :ω ω ∈ σ ∩∗ Z ] ⊃n Z[X].

The Uniformity Theorem is a consequence of the following.







RemarksRemarks

Similar arguments works for all complete graphs.
The case of general graphs is much more involved.

 
Our proof of the Uniformity Theorem is constructive.
An algorithmic version is available as part of .Zeta





TheoremTheorem
(R. & Voll 2019)

Let  be a kite graph.

 is a product of finitely many factors 
for integers  (with explicit descriptions).

 admits meromorphic continuation to all of .

Γ

ζ  (s)G  Γ

cc ζ(s − a)±1

a

ζ  (s)G  Γ

cc C

QuestionQuestion
Do the conclusions of the preceding theorem
characterise kite graphs?




