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Introduction
The six research articles [10–15] (Chapters 1–6) collected in this thesis contain
contributions to the theory of zeta functions of groups, algebras, and modules. To
give an example of the types of zeta functions considered, let A be a possibly non-
associative Z-algebra whose underlying Z-module is finitely generated, e.g. a matrix
Lie algebra over Z or an order in a finite-dimensional associative algebra over Q.
The (global) subalgebra zeta function of A is the Dirichlet series

ζ�A (s) =
∞�

n=1
a�

n (A) · n−s,

where a�
n (A) denotes the number of subalgebras of A of additive index n. Following

a landmark paper by Grunewald, Segal, and Smith [7], a theory of these and related
zeta functions (arising e.g. from the enumeration of subgroups, ideals, submodules, or
representations of suitable algebraic structures) developed rapidly. Moreover, as the
theory evolved, deep and unexpected connections between algebra, number theory,
algebraic geometry, model theory, and combinatorics have been revealed.

It is an elementary observation (essentially the Chinese remainder theorem) that
the subalgebra zeta function ζ�A (s) from above admits an Euler product factorisation

ζ�A (s) =
�

p

ζ�A⊗Zp
(s), (∗)

where p ranges over primes, Zp denotes the ring of p-adic integers, and each local
subalgebra zeta function ζ�A⊗Zp

(s) enumerates the subalgebras of finite index of
the Zp-algebra A ⊗ Zp—or, equivalently, the subalgebras of p-power index of A.

The factorisation (∗) provides the main motivation for encoding the numbers a�
n (A)

from above in a Dirichlet series rather than, say, an ordinary generating function.
Note that the subalgebra zeta function of Z is the Riemann zeta function ζ(s) whose
associated factorisation (∗) is given by Euler’s formula ζ(s) = �

p(1 − p−s)−1.
Despite deep results of du Sautoy and Grunewald [5], the analytic properties of

global zeta functions such as ζ�A (s) often remain elusive. In fact, in contrast to the
example of the Riemann zeta function from above, even the study of the local zeta
functions ζ�A⊗Zp

(s) associated with A frequently poses formidable challenges.
The majority of the work recorded in this thesis is devoted to local and so-called

topological zeta functions. The latter zeta functions were introduced by Denef
and Loeser [3] as certain limits “p → 1” of local ones. While topological zeta functions
contain less information than their local relatives, they have frequently been found
to be more amenable to both theoretical investigations and explicit computations.
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Results I: methods for explicit computations. Building heavily upon each other,
the four articles [10–13] (Chapters 1–4) connect the theory of zeta functions of
algebraic structures with another branch of mathematics: computational algebra.
These articles are devoted to the development of practical methods for explicitly
computing various types of local and topological zeta functions in “fortunate cases”
related to geometric genericity conditions. In the author’s opinion, there is presently
little reason to expect the existence of a method for computing the types of zeta
functions considered here which is both general and practical. The crucial feature of
the author’s work is therefore practicality which is demonstrated by an implementation
in the publicly available software package Zeta [17].

An overview of [10–13], including a more detailed introduction to the area, is given
in the survey article [16] (Chapter 0); the latter article is intended as a chapter in a
forthcoming book on the DFG Priority Programme “Algorithmic and Experimental
Methods in Algebra, Geometry and Number Theory” (SPP 1489) which funded the
author’s research from 2013 to 2016.

The remainder of this introduction is devoted to summarising those of the author’s
contributions which are contained in this thesis but not among the computational
results discussed in [16].

Results II: convex-geometric formulae for local and topological zeta functions.
Apart from providing the theoretical foundation of the author’s computations in
[11–13], the main result of [10] is of independent interest: [10, Thm 4.10] gives an
explicit convex-geometric formula for a large class of p-adic integrals under non-
degeneracy assumptions on defining polynomials with respect to associated Newton
polytopes. The author’s formula vastly generalises previous results of Denef and
Hoornaert [2] and Bories [1] in the realm of Igusa’s local zeta function. Similarly,
the “topological counterpart” [10, Thm 6.7] of [10, Thm 4.10] generalises a result of
Denef and Loeser [3, Thm 5.3(i)]. In addition to [2, 3], the proofs of [10, Thms 4.10
and 6.7] make essential use of work of Khovanskii [8, 9] and others in toric geometry.

Results III: topological representation zeta functions. As indicated above, topo-
logical zeta functions (associated with polynomials, at first) were introduced by
Denef and Loeser [3] as limits “p → 1” of local zeta functions; a rigorous account of
this process is a rather subtle matter. They later [4] found another interpretation
of topological zeta functions of polynomials in the context of motivic integration,
a point of view subsequently used by du Sautoy and Loeser [6, §8] to introduce
topological subalgebra zeta functions.

Apart from providing techniques for their explicit computation (and numerous
applications of these), [12] (Chapter 3) includes the first rigorous definition of
topological representation zeta functions of unipotent groups. Moreover, [12] contains
a number of theoretical results on these zeta functions, including, in particular, a
proof that they always have degree zero [12, Cor. 4.7]. As explained in [10, §8.1], the
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degree of a topological zeta function reflects curious properties of its local relatives
which, to the author’s knowledge, previously escaped attention.

Results IV: submodules invariant under a matrix. The study of the so-called
submodule zeta functions featuring (among other types of zeta functions) in [10,11,13]
goes back to work of L. Solomon [20]. The article [14] (Chapter 5) constitutes a
thorough analysis of a special class of submodule zeta functions. Given an n × n
matrix A with entries in the ring of S-integers oS of a number field k (where S is a
finite set of places of k containing the Archimedean ones), consider the zeta function

ζA,oS
(s) =

∞�

m=1
am(A, oS)m−s,

where am(A, oS) denotes the number of A-invariant submodules of on
S of additive

index m. We regard such zeta functions as arithmetic analogues of the varieties of
subspaces invariant under a given matrix as studied e.g. by Shayman [19].

Disregarding a finite number of exceptional Euler factors, [14, Thm A] expresses
ζA,oS

(s) in an explicit fashion (depending on the rational canonical form of A over k)
as a product of translates of Dedekind zeta functions. Particular consequences
include the fact that, unlike general submodule zeta functions, ζA,oS

(s) always
admits meromorphic continuation to the complex plane. Moreover, the abscissa of
convergence of ζA,oS

(s) (known to be a positive rational number by deep and general
results of du Sautoy and Grunewald [5]) turns out to be a natural number.

In addition to further results on analytic properties of the zeta functions ζA,oS
(s),

[14] also contains applications to other types of zeta functions. In particular, [14,
Prop. 6.2] shows that global ideal zeta functions associated with non-abelian nilpotent
Lie algebras of maximal class have abscissa of convergence 2; this constitutes one of
very few instances where abscissae of convergence of subobject zeta functions have
been determined without explicitly computing the latter (a usually infeasible task).

Finally, by [14, Thm 4.4], the ideal zeta function of the power series ring Z[[X]] is

ζ�
Z[[X]](s) =

∞�

i=1
ζ(is − i + 1),

where ζ(s) again denotes the Riemann zeta function. Segal [18] has shown that
for suitable Dedekind domains R, the ideal zeta function of R[X] is ζ�

R[X](s) =�∞
i=1 ζ�

R(is − i). To the author’s knowledge, these two formulae constitute the only
cases of known ideal zeta functions of 2-dimensional rings.

While logically independent of the computational work in [10–13], calculations
using Zeta were instrumental in finding the statements of the main results of [14].

Results V: stability. The shortest article [15] (Chapter 6) in this thesis is devoted to
the interplay of two natural operations in the context of the local zeta functions from
above: variation of the prime and local base extensions. Instead of reproducing the
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main result [15, Thm 3.2] of [15] and its implications for zeta functions of algebraic
structures, we give an example of a typical application.

First, we recall that the (twist) representation zeta function ζ �irr
G (s) of a

finitely generated nilpotent pro-p group G (where p is a prime) is the Dirichlet series

ζ �irr
G (s) =

∞�

n=1
r̃n(G) · n−s,

where r̃n(G) denotes the (finite) number of continuous irreducible n-dimensional com-
plex representations of G, counted up to equivalence and tensoring with continuous
1-dimensional representations.

Let G and H be unipotent algebraic groups over Q. By choosing faithful linear
representations of G and H, we obtain group schemes G and H (over Z) such that
G and H become isomorphic to G and H, respectively, after extension of scalars.
Since G and H are unipotent, G(Zp) and H(Zp) are finitely generated nilpotent pro-p
groups for almost every prime p (i.e. for all but finitely many p). The main result
of [15] implies that the representation zeta functions of these groups are “rigid” in
the following sense. Suppose that ζ �irr

G(Zp)(s) = ζ �irr
H(Zp)(s) for all p in a set of primes of

density 1. Then for almost all primes p and all finite extensions K of the field Qp of
p-adic numbers, ζ �irr

G(OK)(s) = ζ �irr
H(OK)(s), where OK denotes the valuation ring of K.

The proofs of such results in [15] combine formulae obtained using the p-adic
integration machinery frequently used in the area, Grothendieck’s trace formula for
the number of rational points on varieties over finite fields, and Chebotarev’s density
theorem. Further applications include consequences for the computation of local and
topological zeta functions and the interpretation of local functional equations such
as those established by Voll [21].
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