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Abstract. We use computational methods to investigate periodic patterns

in the graphs G(p, (d, w, o)) associated with the p-groups of rank d, width w,
and obliquity o. In the smallest interesting case G(p, (3, 2, 0)) we obtain a
conjectural description of this graph for all p ≥ 3; in particular, we conjecture

that this graph is virtually periodic for all p ≥ 3. We also investigate other
related infinite graphs.
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1. Introduction

Which invariants are useful in the classification of p-groups?

The order has been considered in many publications, going back to the begin-
nings of abstract group theory in the 19th century; see [1] for a history. Nowadays,
the p-groups of order dividing 29 (see [5]) and p7 (see [16]) are available, but a full
classification of the groups of order pn in general still seems to be out of reach. An
important step towards a full classification would be a proof of the famous PORC
conjecture [7] which asserts that for fixed n, the number f(p) of p-groups of order
pn is a polynomial on residue classes.

Leedham-Green and Newman [14] suggested using the coclass to classify p-
groups. Recall that the coclass of a finite p-group G of order pn and nilpotency class
cl(G) is defined as cc(G) = n−cl(G). A first and fundamental idea in classifying all
p-groups of a given coclass r is to visualize them in a graph G(p, r): the vertices of
this graph correspond to the isomorphism types of p-groups of coclass r and there
is a directed edge G → H if G ∼= H/γcl(H)(H) holds, where γi(H) denotes the ith
term of the lower central series of H. The classification of all p-groups of coclass r
thus translates to an investigation of the infinite graph G(p, r).

Coclass theory has become a rich and interesting research field in group theory.
A highlight in this theory was the complete proof of the coclass-conjectures [14]
by Shalev [18] and Leedham-Green [11]. We refer to the book by Leedham-Green
and McKay [13] for background and details. Nowadays, the fundamental aim in
coclass theory is to prove that every graph G(p, r) can be constructed from a finite
subgraph using certain periodic patterns. This has been proved for p = 2 in [3] and
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[4], but is still open for odd primes. A central problem in the odd prime case is that
the graphs G(p, r) are usually rather thick and thus are often difficult to investigate
in detail. As a consequence, only very little detailed experimental evidence on the
structure of these graphs is available and explicit conjectures on the nature of any
useful periodic patterns are vague at present.

Leedham-Green thus suggested to try other invariants with a similar approach
as in coclass theory with the hope of obtaining graphs which have all the nice
features of the graphs G(p, r), but are thinner and thus easier to understand. In
particular, Leedham-Green initiated the classification of p-groups by rank, width

and obliquity; see Chapter 12 of [13] for a discussion. We briefly recall the definitions
of these invariants: for any finite or infinite pro-p-group G and a closed subgroup
H of G, let [G : H]p denote the p-logarithm of the index [G : H]; further let
d(G) = [G : Φ(G)]p be the cardinality of a minimal (topological) generating set
of G, and let µi(G) denote the intersection of all closed normal subgroups of G
which are not properly contained in γi(G). Then we define for a pro-p-group G:

• its rank r(G) = sup{d(U) | U a closed subgroup of G},
• its width w(G) = sup{[γi(G) : γi+1(G)]p | i ∈ N}, and
• its obliquity o(G) = sup{[γi(G) : µi(G)]p | i ∈ N}.

The obliquity of a group determines how restricted its lattice of normal subgroups
is. In particular, in a group of obliquity 0 every normal subgroup lies between two
consecutive terms of the lower central series.

Let τ(G) denote the triple (r(G),w(G), o(G)) and define the graph G(p, (d,w, o))
similar to the coclass graphs: the vertices of this graph correspond to the isomor-
phism types of finite p-groups G with τ(G) = (d,w, o) and there is a directed
edge G → H if G ∼= H/γcl(H)(H) holds. The classification of all p-groups G
with τ(G) = (d,w, o) now translates to understanding the (usually) infinite graph
G(p, (d,w, o)).

In this paper we discuss how computational tools can be used to investigate
the graphs G(p, (d,w, o)) and we exhibit experimental results for some small and
interesting cases. Thus, we give a conjectural description of the graph G(p, (3, 2, 0))
for p > 2 based on our experimental data. It suggests that G(p, (3, 2, 0)) can
be constructed from a finite subgraph using certain periodic patterns and hence
G(p, (3, 2, 0)) seems to have the nice features displayed by the coclass graphs G(2, r)
and, moreover, it is a rather thin graph which can be easily exhibited.

An interesting family of infinite pro-p-groups G with finite τ(G) are the Sylow
pro-p-subgroups of Aut(L) for simple Lie algebras L of the type L = sℓn(K) for
p ≥ 3, where K/Qp is a finite extension. The lower central series quotients of such
a group G define an infinite path through the graph G(p, τ(G)). We show how our
computational tools can be used to investigate these infinite paths together with
certain branches associated with them. Our experiments with these infinite trees
indicate that they also exhibit periodic patterns of the same type as G(p, (3, 2, 0)).

Throughout this paper we assume that p is an odd prime.

2. Preliminaries

There is a correspondence between the infinite paths in G(p, (d,w, o)) and the
isomorphism types of infinite pro-p-groups G with τ(G) = (d,w, o). Hence a first
aim in understanding G(p, (d,w, o)) is a classification of the infinite pro-p-groups G
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with τ(G) = (d,w, o). In this section, we recall some basic facts about these groups.
Recall that a pro-p-group is just infinite if it is infinite but every non-trivial closed
normal subgroup has finite index.

Lemma 2.1. Let G be an infinite pro-p-group of finite rank, finite width, and

finite obliquity. Then G is p-adic analytic and just infinite.

Proof. A pro-p-group of finite rank is p-adic analytic by [2], Corollary 8.33.
An infinite pro-p-group of finite width and finite obliquity is just infinite, see
[10], p. 3. �

If G is a pro-p-group of finite width, then G/γi(G) is finite for all i ∈ N. If,
moreover, τ(G) is finite, then there exists a k ∈ N with τ(G/γi(G)) = τ(G) for all
i ≥ k and the groups G/γi(G) for i ≥ k thus define an infinite path through the
graph G(p, τ(G)).

2.1. The solvable case. Let G be an infinite solvable pro-p-group of finite
rank, width, and obliquity. Then G is an irreducible p-adic space group, see for
example [19], Lemma 8.1. This means that G is an extension of a free p-adic
module Zd

p for some d ∈ N by a finite p-group P which acts faithfully on Zd
p and

irreducibly on Qd
p.

The possible dimensions d and point groups P are well-understood, see for
example [13]. Excluding the trivial case d = 1, irreducible finite p-subgroups
of GLd(Zp) only exist for dimensions d of the form d = pr−1(p− 1) for some r ∈ N.
For such d, the group GLd(Zp) has precisely pr−1 conjugacy classes of Sylow p-
subgroups with representatives W1, . . . ,Wpr−1 , say. These groups W1, . . . ,Wpr−1

are all conjugate in GLd(Qp) to an r-fold iterated wreath product Cp ≀ · · · ≀ Cp of
cyclic groups of order p.

It is well-known that each p-adic space group can be embedded as a subgroup
of finite index into a split space group; that is, a space group which is a split
extension of Zd

p by P , see for example [13], Lemma 10.4.1. This implies the following
embedding theorem.

Theorem 2.2. Let G be an irreducible p-adic space group of dimension d =
pr−1(p − 1). Then G embeds as subgroup of finite index into Zd

p ⋊ Wi for some

i ∈ {1, . . . , pr−1}.
A simple example of an infinite solvable pro-p-group of finite rank, width, and

obliquity is the group Zp−1
p ⋊Cp. This group has rank p−1, width 2, and obliquity 0.

It also has finite coclass; in fact, it is the unique infinite pro-p-group of coclass 1.

2.2. The insolvable case. The insolvable infinite pro-p-groups of finite rank,
width, and obliquity are discussed in detail in [10]. Here we only recall some of
their features. The following theorem yields a characterization of these groups, see
Lemma 2.1 and [10], Section IIId.

Theorem 2.3. Let G be an insolvable infinite pro-p-group. Then G has finite

rank, width, and obliquity if and only if G is p-adic analytic and just infinite.

Every pro-p-group of finite rank has an associated Lie algebra, see for exam-
ple [2], Section 9.5. In the case of an insolvable infinite pro-p-group of finite rank,

width and obliquity, this Lie algebra is homogeneous of the form Spk

= S⊕ · · · ⊕S
(pk summands) for a simple finite-dimensional Lie algebra S over Qp and some
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k ≥ 0, see [10], Proposition III.6. The following theorem shows how such a pro-p-
group can be recovered from its associated Lie algebra; we refer to [10], Proposi-
tion III.9 and Corollary III.10 for details and background.

Theorem 2.4. Let G be an insolvable infinite pro-p-group of finite rank, width,

and obliquity, and let L be its associated Lie algebra over Qp. Then G embeds as a

subgroup of finite index into a Sylow pro-p-subgroup of Aut(L).

If L = Spk

for a simple Lie algebra S, then Aut(L) = Aut(S) ≀ Sym(pk) and
thus the Sylow pro-p-subgroups of Aut(L) can be determined from the Sylow pro-
p-subgroups of Aut(S) and Sym(pk). The Sylow p-subgroups of Sym(pk) are well-
understood and can be constructed readily. It is known from [10], Lemma III.16
that the Sylow pro-p-subgroups of Aut(L) are all conjugate.

Theorem 2.4 suggests an approach for constructing the insolvable infinite pro-
p-groups of finite rank, width and obliquity: first classify the finite-dimensional
simple Lie algebras over Qp, then determine the Sylow pro-p-subgroups of their
automorphism groups, and finally list the relevant subgroups of finite index in the
relevant wreath products based on these Sylow pro-p-subgroups. None of the steps
in this approach is straightforward in practice. For example, in [10] the Sylow pro-p-
subgroups of the homogeneous Lie algebras of dimension at most 14 are determined
and this proved to be highly non-trivial.

Examples of simple Lie algebras over Qp are the linear Lie algebras sℓd(K)
consisting of all d × d matrices with trace 0 over an extension K of Qp. If K has
degree m over Qp, then sℓd(K) has dimension m(d2 − 1) over Qp. Note that there
are only finitely many field extensions K of any given degree over Qp. The group
Aut(sℓd(K)) of automorphisms over Qp is (PGLd(K) ⋊ D) ⋊ Gal(K/Qp), where
D is the group of so-called diagram automorphisms. The Sylow pro-p-subgroup of
Aut(sℓd(K)) is explicitly determined in [10], Lemma XI.4.

2.3. The pro-p-groups of rank 3, width 2, and obliquity 0. A complete
classification of the infinite pro-p-groups of rank 3, width 2, and obliquity 0 up to
isomorphism is given in [13], Theorem 12.2.3: for every p > 2, there are two groups
of this type (up to isomorphism). We briefly recall their description.

The first group is the Sylow pro-p-subgroup of Aut(L), where L is the simple
3-dimensional Lie algebra sℓ2(Qp) of 2×2-matrices with trace 0 over Qp. As shown
in [13], this group can be identified with the subgroup of SL2(Zp) consisting of the
matrices which are upper unitriangular modulo p.

There is exactly one other isomorphism type of simple Lie algebras of dimen-
sion 3 over Qp. To construct a representative, M say, for this isomorphism type,
let Qp(a) be the unramified extension of Qp of degree 2, where a has multiplica-
tive order p2 − 1. Let π be the automorphism of Qp(a) with aπ = ap and define
K = Qp(a, π). Then K is a division algebra of degree 4 over Qp. Commutation in
K defines a Lie algebra H and M = [H,H] is the desired simple Lie algebra.

The second infinite pro-p-group of rank 3, width 2, and obliquity 0 is the Sylow
pro-p-subgroup of Aut(M). As shown in [13], this group can be identified with the
central quotient U/Z(U), where U is the group of 1-units of Zp(a, π).

3. The graphs G(p, (d,w, o))
For a group G we write Gi = G/γi(G) for i ∈ N. If G is an infinite pro-p-

group with τ(G) = (d,w, o), then there exists an integer k such that the quotients
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Gi for i ≥ k form an infinite path through G(p, (d,w, o)). Conversely, the inverse
limit of the groups on an infinite path in G(p, (d,w, o)) is an infinite pro-p-group
G with τ(G) = (d,w, o). Hence the infinite pro-p-groups G with τ(G) = (d,w, o)
parametrize the graph G(p, (d,w, o)) in this sense. Our aim is to investigate the
graphs G(p, (d,w, o)) based on this parametrization.

3.1. Descendant trees and τ-trees. For a finite p-group H we denote by
T (H) the descendant tree ofH: the vertices of T (H) correspond to the isomorphism
types of finite p-groups K such that Kcl(H)+1

∼= H and there is an edge K → L
if Lcl(L)

∼= K. The groups in T (H) are called descendants of H. An immediate

descendant of H is a descendant of H of class cl(H) + 1.
Let G be an infinite pro-p-group with τ(G) = (d,w, o) and let i be minimal

such that τ(Gi) = (d,w, o) and Gi 6∼= Hi for any infinite pro-p-group H 6∼= G with
τ(H) = (d,w, o). Since there are only finitely many possible isomorphism types
for H, see [12], p. 72, such an i exists. The τ -tree T (G, (d,w, o)) is defined as the
intersection of T (Gi) with G(p, (d,w, o)); it thus consists of all descendants K of
Gi with τ(K) = (d,w, o). Note that Gi → Gi+1 → . . . is the unique infinite path
in T (G, (d,w, o)) starting at the root Gi of this tree.

3.2. Virtual periodicity of trees. Let T be a tree with root R having a
unique infinite path R = R1 → R2 → . . .. For each i ∈ N let BRi

(T ) be the subtree
of T consisting of the descendants of Ri which are not descendants of Ri+1. Then
BRi

(T ) is a branch of T . We say that T is virtually periodic if there exist l and d
such that

BRi
(T ) ∼= BRi+d

(T )

for every i ≥ l. We then call the least possible value of such a d the period and
the corresponding least possible value of l the defect of T . Note that a virtually
periodic tree T with defect l and period d can be constructed from its first l+d−1
branches BR1

(T ), . . . ,BRl+d−1
(T ).

3.3. Virtual periodicity of G(p, (d,w, o)). We say the graph G(p, (d,w, o))
is virtually periodic if all but finitely many groups of G(p, (d,w, o)) are contained in
a τ -tree of G(p, (d,w, o)) and if every τ -tree of G(p, (d,w, o)) is virtually periodic. If
G(p, (d,w, o)) is virtually periodic, then it can be constructed from a finite subgraph
and this would furnish a classification of the p-groups with rank d, width w, and
obliquity o. However, the following interesting question is wide open at current.

Question: For which primes p and which (d,w, o) is G(p, (d,w, o)) virtually

periodic?

It is hoped that for every prime p and every (d,w, o) all but finitely many
groups of G(p, (d,w, o)) are contained in a τ -tree of this graph.

It can be deduced from [13], Proposition 3.1.2 and Exercise 3.3(3) that if p > 2
and P is a finite p-group of maximal class and order at least pp+1, then τ(P ) =
(p − 1, 2, 0) holds. Consequently, all but finitely many groups from the coclass
graph G(p, 1) are contained in the graph G(p, (p − 1, 2, 0)). Since it is known that
the (unique) maximal infinite subtree of G(p, 1) is not virtually periodic in the sense
of Section 3.2 for p > 3, it follows that not every graph G(p, (d,w, o)) is virtually
periodic.

We conjecture below that the graph G(p, (3, 2, 0)) is virtually periodic for all
primes p ≥ 3.
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4. Computational methods

Many computational methods work with the lower p-series rather than the lower
central series: the lower p-series of a finite p-group H is defined by λ1(H) = H
and λi+1(H) = [λi(H), H]λi(H)p for i ≥ 1. The length of this series is the p-class
of H. A finite p-group K is an immediate p-descendant of H if K/λd+1(K) ∼= H,
where d is the p-class of H, and if, in addition, the p-class of K is d+ 1.

The ANUPQ [15] program allows the determination of all immediate p-descen-
dants of a given non-trivial finite p-groupH up to isomorphism. We want to use this
program to determine the immediate descendants of H. For this purpose we inves-
tigate under which circumstances the p-descendants coincide with the descendants.
We call a finite p-group H stable if γi(H) = λi(H) holds for all i.

Lemma 4.1. Suppose that H is non-abelian and stable. Then E is an immediate

descendant of H if and only if it is an immediate p-descendant of H.

Proof. It suffices to show that either condition on E implies that E is stable.
Thus let E be an immediate descendant of H. As E/γ2(E) = E/λ2(E), it follows
from [8], Kapitel III, Satz 2.13b that every lower central factor of E has exponent
dividing p. Hence E is stable. Conversely, let E be an immediate p-descendant
of H. Then E/λ2(E) ∼= H/λ2(H) = H/H ′ ∼= E/λc+1(E)E′ and hence λ2(E) =
λc+1(E)E′. Therefore, λ2(E)/E′ = λc+1(E)E′/E′ ∼= λc+1(E)/λc+1(E) ∩ E′ has
exponent dividing p, whence λc+1(E) ≤ λ3(E) ≤ E′. Thus, E′ = λ2(E) and E is
stable. �

In this manner the ANUPQ program allows us to construct finite subtrees of
a descendant tree T (H) for a non-abelian and stable p-group H. The resulting
descendants are all described in terms of power-commutator (pc) presentations.
Such presentations allow effective computations with the groups they define and
we can further investigate the resulting groups using the computer algebra system
GAP [20].

The width of a group defined by a pc presentation can be read off quite readily:
we need to determine the lower central series of the groups under consideration.
Even simpler, if the group in question is a descendant determined by ANUPQ, then
its lower central series and thus its width can be read off directly.

The rank and the obliquity of a group defined by a pc presentation can be com-
puted, but the available algorithms for this purpose are significantly less effective
than those for the computation of the width. We use the formula from [10], p. 74,
to determine the obliquity of a finite p-group H. That is, we use the formula

µi(H) = µi−1(H) ∩ γi(H) ∩
⋂

{N ⊳ H | N 6≤ γi(H) and N ≤ γi−1(H)}
and then obtain that the obliquity of H is given by

o(H) = max
i

logp[γi(H) : µi(H)].

We determine the rank of a finite p-group H by computing a representative for
every conjugacy class of subgroups of H and determining the maximum of their
minimal generator numbers.

We combine these methods to the following approach for determining finite
parts of the τ -tree for an infinite pro-p-group G which has finite rank, width and
obliquity and a stable quotient G/γ2(G). Note that the latter condition implies that
all lower central quotients Gi = G/γi(G) are stable. First we choose i large enough
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such that Gi satisfies τ(Gi) = τ(G) = (d,w, o) and Gi 6∼= Hi for any infinite pro-p-
group H with H 6∼= G and τ(H) = (d,w, o). Then we apply the ANUPQ program
to start generating the descendant tree of Gi. For every obtained descendant K,
we check whether it satisfies τ(K) = (d,w, o) and if this is not the case, then we
discard K. The remaining descendants are groups in T (G, (d,w, o)).

Implementations of our main methods can be found in the Fwtree package [6]
for the computer algebra system GAP.

5. The graph G(p, (3, 2, 0))
We have used the algorithms of Section 4 to investigate the graph G(p, (3, 2, 0))

for various primes p > 2. This section summarizes our results.
Recall that for every prime p > 2 the graph G(p, (3, 2, 0)) contains two τ -trees;

these correspond to the two isomorphism types of infinite pro-p-groups of rank 3,
width 2, and obliquity 0. Let G andH denote representatives for these isomorphism
types, where G corresponds to the Lie algebra sℓ2(Qp).

The following lemma reduces the investigation of G(p, (3, 2, 0)) to an investiga-
tion of its τ -trees.

Lemma 5.1. If p > 2, then almost all groups in G(p, (3, 2, 0)) are contained in

a τ -tree.

Proof. For p ≥ 5, this is a consequence of [13], Theorem 12.2.15. For p = 3,
we can explicitly determine the groups not contained in the τ -trees. If P is a 3-group
with τ(P ) = (3, 2, 0), then its class-2 quotient P3 is isomorphic to the non-abelian
group of order 27 and exponent 3, K say; note that τ(K) = (2, 2, 0). This group
K has eleven immediate descendants: four of order 81 and seven others. Among
the four of order 81, only one group, Q say, has immediate descendants. The
descendants of Q all have coclass 1. As observed in Section 3.3, almost all 3-groups
of coclass 1 have rank 2. Hence only finitely many descendants of Q are contained
in G(3, (3, 2, 0)). It remains to consider the seven other descendants of K. They
all have rank 3, width 2, and obliquity 0, but only two of them have immediate
descendants with these properties. These two groups are isomorphic to G4 and H4,
respectively, which are the roots of the τ -trees of G(3, (3, 2, 0)). �

5.1. A conjectural description of the τ-trees. First we note that G4

and H4 are non-isomorphic quotients of G and H which are both contained in
G(p, (3, 2, 0)), see [13], Section 12.2. Hence the τ -trees TG := T (G, (3, 2, 0)) and
TH := T (H, (3, 2, 0)) are subtrees of T (G4) and T (H4), respectively. Each tree TG
or TH consists of its unique infinite path and its branches. To describe the two
infinite trees, we describe their branches only. Let Bj(G) and Bj(H) denote the
branches of TG and TH with roots Gj and Hj , respectively.

Figures 1–4 exhibit our conjectural descriptions for all of these branches. Their
shapes depend on the underlying group G or H, the class of the root of the branch
and the underlying prime p. We use a compact notation to visualize trees: if a
vertex v has a number n attached to it (written on the right), then there are n
vertices v = v1, v2, . . . , vn in the tree under consideration and all these vi have the
same ancestor and they all have isomorphic descendant trees.

Thus our experiments suggest the following conjecture.

Conjecture 5.2. For every p > 2, the graph G(p, (3, 2, 0)) is virtually periodic.
More precisely, both of its τ -trees are virtually periodic with period 2 and defect 1.
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Figure 1. The branches B2j(G) and B2j+1(G) for j ≥ 2 and p = 3

pG2j+1

G2j

G2j+2 (p− 1)/2

G2j+1

G2j+2

3

Figure 2. The branches B2j(G) and B2j+1(G) for j ≥ 2 and p ≥ 5
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Figure 3. The branches B2j(H) for j ≥ 2 and B2j−1(H) for j ≥ 3
and p = 3
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Figure 4. The branches B2j(H) and B2j+1(H) for j ≥ 2 and p ≥ 5

We note that the results of a first investigation of G(p, (3, 2, 0)) for p ≥ 5 are
described in [13], Section 12.2, based on results from [17]. The results obtained
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there imply that if p ≥ 5, then the branches of the τ -trees of G(p, (3, 2, 0)) have
depth at most 2.

5.2. Details on our computations. For given p and i, the quotients Gi

and Hi can be constructed readily from their definitions, see also [10]. The lower
central factors of G and H are known from [13], pp. 273–274. In particular, they
are always elementary abelian and thus the quotients Gi and Hi are stable for all i.
Hence our methods of Section 4 apply.

We determined the first branches of the τ -trees TG and TH for all primes p ≤ 13
and the first branches of the full descendant trees T (G4) and T (H4) for all primes
p ≤ 41. The numbers of branches that we determined for p ≤ 13 are given in
Table 1.

p TG T (G4) TH T (H4)
3 11 26 7 6
5 8 18 5 12
7 6 14 10 16
11 5 8 5 10
13 5 6 5 9

Table 1. Numbers of computed branches

The computation of the branches of the full descendant trees is significantly
less time-consuming than the corresponding computation for τ -trees, since the de-
termination of the rank and the obliquity for a finite p-group is highly time- and
space-consuming. Consequently, we constructed significantly more branches of the
full descendants trees than of the corresponding τ -trees. We note that the branches
of the descendants trees and the corresponding τ -trees coincided in all cases where
we computed both (except for the first branch B4(H) in the case p = 3).

Our computations were performed on a PC with two 2Ghz processors and
3GB of RAM running under Linux. As an illustration, Table 2 lists approximate
runtimes (in seconds) for the construction of the branches Bi(G) of the τ -tree TG
and for the corresponding branches T (Gi) \ T (Gi+1) of the full descendant trees
for p = 3.

i 4 5 6 7 8 9 10 11 12 13 14

Bi(G) 59 11 182 32 643 132 2,124 392 6,032 1,149 15,137

T (Gi) \ T (Gi+1) 11 3 15 3 22 4 31 6 45 9 64

Table 2. Approximate runtimes (in seconds) for G and p = 3

6. The trees associated with sℓn(K)

Let Gn(K) be the Sylow pro-p-subgroup of Aut(L), where L is a simple Lie
algebra of the form L = sℓn(K) for a field extension K of Qp with finite degree m.
Then Gn(K) has finite rank, width, and obliquity.
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It would be highly interesting to investigate the τ -trees associated with these
groups Gn(K) with a view towards checking whether these trees are virtually pe-
riodic. In the smallest case (n,m) = (2, 1) this has been done in Section 5 and a
complete conjectural outline of the corresponding trees has been obtained. In all
larger cases of (n,m) this is less straightforward with our current computational
methods and theoretical knowledge. In this section we consider the groups of the
form Gn(K) for some larger values of (n,m) and investigate their descendant trees
as a first approximation of their τ -trees.

The groups Gn(K) are investigated in [10] for the cases with (n2 − 1)m ≤ 14;
that is, for the cases (n,m) = (2, 1), (2, 2), (2, 3), (2, 4), and (3, 1). In each of these
cases there may be several groups depending on the number of different fields K.
The different fields K can be retrieved from the database [9] for small primes. The
following table provides some summary information: it considers the different types
of K, the number of corresponding groups Gn(K) and their parameters τ(Gn(K))
as far as they are available in [10]. If a ⋆ is listed, then the number of fields (and
thus the number of groups) depends on the prime.

(n,m) type of K p = 3 p ≥ 5
# grps params # grps params

(3, 1) K = Qp 1 (?, 2, 5) 1 (?, 3, ?)
(2, 2) K totally ramified 2 (?, 2, 0) 2 (?, 2, ?)
(2, 2) K unramified 1 (?, 4, 0) 1 (?, 4, ?)
(2, 3) K totally ramified 9 (?, 2, 0), (?, 3, 3) ⋆ (?, 2, ?)
(2, 3) K unramified 1 (?, 3, 4) 1 (?, 6, ?)
(2, 4) K totally ramified 2 (?, 2, 0) ⋆ (?, 2, ?)
(2, 4) K mixed ramified 2 (?, 4, 0) ⋆ (?, 4, ?)
(2, 4) K unramified 1 (?, 8, ?) 1 (?, 8, ?)

Among the infinite pro-p-groups of finite rank, width, and obliquity, the groups
Gn(K) are reasonably well understood. The algorithms of [10] can be used to
determine lower central series quotients of these groups and these can then be used
as a basis for further computations. Pc presentations of finite quotients of the
groups can be obtained from the Fwtree package [6].

From [10] we further obtain that all the groups considered here have stable
lower central series quotients so that our algorithms of Section 4 apply and we can
compute finite parts of their descendant trees.

6.1. The case (n,m) = (2, 2) and p = 3. Consider the groups G2(K) with K
totally ramified of degree 2 over Q3. There exist two fieldsK in this case: Q3(

√
±3).

Denote the corresponding groups byG = G2(Q3(
√
−3)) andH = G2(Q3(

√
3)). Our

computational evidence suggests the following conjecture.

Conjecture 6.1. The descendant trees T (G7) and T (H7) are both virtually
periodic with period 4 and defect 1.

In the following, we display the branches with roots G7, . . . , G10 and with roots
H7, . . . , H10 using the same notation as in Section 5.1. First, the branches with
roots G7 and H7 and with roots G9 and H9 are isomorphic and are given in the
following figures.
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Next, we exhibit the branches with roots G8 and G10.

186 369

20 40

3 3
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165 15
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18 2720
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3 24 9

27
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4

186 369

40

3

27
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3
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15
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27

35

2

27

G10
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9

27

18

2

3

18

9 3

2714

10 4

27

2 2

Finally, the branches with roots H8 and H10 are shown in the following figures.
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2

18

186

20 27

H8

27

3

35

225

2

H10

For both choices of the field extension Q(
√
±3), we have been able to verify five

occurrences of the conjectured periodic pattern (consisting of four branches each).

6.2. The case (n,m) = (2, 2) and p > 3. Let p ≥ 5 and K be a totally
ramified extension of degree 2 over Qp. There are two such fields K to consider
and, correspondingly, two groups G2(K) exist. Our experimental evidence suggests
that there are periodic structures in the descendant trees of the lower central series
quotients of these two groups with period a multiple of 4 and defects depending
on K.

Let G be either of the two groups G2(K). We conjecture that for sufficiently
large i the first branch of the descendant tree of G2i is as displayed in the following
figure, independent of the field K.

(p + 1)/2

G2i

For j odd, we could only properly investigate the branches with root Gj for
p = 5, and even in this case we have only computed “shaved” versions of these
branches. Thus, we have investigated the groups in such a branch of order at
most |Gj |p3.

Our conjectural description of the resulting trees in the case p = 5 is exhibited
in the following figures. Note that, again, these trees do not seem to depend on K.

4906

59

15

18 30

25

G4i+1

15

18 30

25

G4i+3

71

4958

For p = 5, we have been able to verify three full and an incomplete fourth
occurrence of the above pattern of four “shaved” branches.

6.3. Other cases. We have also experimented with other cases of (n,m), K,
and p. The case p = 3 proved to be the most accessible one; we include a brief sum-
mary of our experiments with this case. Throughout, let G = Gn(K) and denote
by T ∗(Gj) the subtree of T (Gj) consisting of the groups H in T (Gj) satisfying the
condition that γi(H)/γi+1(H) ∼= γi(G)/γi+1(G) holds whenever γi(H) 6= 1.

For (n,m) = (3, 1), there is strong evidence that T ∗(G16) is virtually periodic
with period 6 and defect 1.

For (n,m) = (2, 3), as in the last subsection, we investigated “shaved” versions
of T ∗(Gj) consisting only of those groups H in T ∗(Gj) such that |H| ≤ |Gi|pd for
some fixed d. For the six ramified non-Galois extensions of degree 3 over Q3 we
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obtained that these “shaved” branches seem to be virtually periodic with period 2;
the number d we used varied subject to 3 ≤ d ≤ 6.

Similarly, for (n,m) = (2, 4), we also investigated “shaved” branches of T ∗(Gj)
only. For the two totally ramified extensions of degree 4 of Q3 we obtained that
the resulting “shaved” branches seem to be virtually periodic with period 4.
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