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1 Introduction

1.1 Zeta functions in group theory and related fields

The past decades saw the development of a theory of zeta functions of groups
and related algebraic structures. In this article, we consider subobject and
representation zeta functions related to enumerative problems associated with
nilpotent groups. For introductions to the area and surveys of developments
in particular directions, we refer the reader to [15, 19, 29, 56, 57]. We will
concern ourselves with zeta functions that one can attach to a suitable infinite
algebraic object (e.g. a Lie algebra or a group). In a different direction, zeta
functions have found striking applications in the study of infinite families of
finite groups; for surveys of this active branch of asymptotic group theory, we
refer to [34,46].
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The subobject zeta functions of interest to us can be traced back to a number
of sources. An early ancestor is given by the Dedekind zeta function of a number
field, an instance of a submodule zeta function as defined below. More recently,
L. Solomon [48] introduced zeta functions enumerating ZG-lattices within
a fixed ZG-module for a finite group G. In a seemingly different direction, a
hugely influential paper of Grunewald, Segal, and Smith [23] initiated the
study of zeta functions arising from the enumeration of subgroups of finite
index in a given finitely generated torsion-free nilpotent group (a T-group, for
short). In detail, given such a group G, they defined its (global) subgroup zeta
function to be

ζ
6
G (s) = ∑

H
|G : H|−s,

where H ranges over the subgroups of finite index of G. They also established
various key properties of these zeta functions such as:

• (Convergence.) Let h be the Hirsch length of G. Then ζ
6
G (s) converges and

defines an analytic function on the half-plane {s ∈ C : Re(s)> h}.
• (Euler product.) ζ

6
G (s) = ∏

p prime
ζ
6
Ĝp
(s), where Ĝp denotes the pro-p com-

pletion of G and each local subgroup zeta function ζ
6
Ĝp
(s) is defined by

enumerating open subgroups of Ĝp according to their indices.
• (Rationality.) Each ζ

6
Ĝp
(s) is rational in p−s over Q.

For G = Z, we recover the Riemann zeta function ζ (s) = ζZ(s) = ∑
∞
n=1 n−s

and the classical Euler product ζ (s) = ∏p(1− p−s)−1. This simple illustration
notwithstanding, while the first two of the above points are elementary, the
rationality of local subgroup zeta functions is a deep theorem.

By only considering normal subgroups of finite index of G, the normal
subgroup zeta function ζ /

G(s) of G is obtained; it satisfies the evident analogues
of the properties stated above. The subalgebra and submodule zeta functions
defined in §2.1 essentially constitute generalisations of the local and global
(normal) subgroup zeta functions associated with nilpotent groups. Indeed,
as explained in [23], the Mal’cev correspondence allows us to linearise the
enumeration of subgroups by replacing the nilpotent group in question by a
suitable nilpotent Lie Z-algebra (at the cost of having to discard finitely many
Euler factors).

Apart from subobject zeta functions, we also consider representation zeta
functions. These are Dirichlet series enumerating certain finite-dimensional
irreducible representations of a suitable group up to adequate notions of
equivalence. Representation zeta functions were introduced by Witten [59] in
the context of complex Lie groups. Jaikin-Zapirain [26] made fundamental
contributions to the study of representation zeta functions of compact p-adic
analytic groups. Within infinite group theory, a substantial amount of recent
work has been devoted to representation zeta functions of groups arising from
semisimple algebraic groups; see e.g. work of Larsen and Lubotzky [32] and
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Avni et al. [2]. In a seemingly different direction, Hrushovski and Martin [24]
(v1, 2006) introduced representation zeta functions of T-groups; these are the
representation zeta functions that we shall consider.

As we will explain in §3, the subobject and representation zeta functions
considered here share a crucial common feature: in each case, a single global
object (e.g. a T-group) gives rise to a family of associated local zeta functions
indexed by primes (or places of a number field) and, after excluding finitely
many exceptions, these local zeta functions can all be described in terms of a
single “formula”. We express this by saying that there exists such a “formula”
for the generic local zeta functions in question. In a surprising number of in-
teresting cases (including most cases that have been successfully computed
so far), the local zeta functions under considerations are in fact given by a
rational function W (p, p−s) in p and p−s over Q (again after possibly excluding
finitely many primes). This phenomenon is referred to as (almost) uniformity
in [19, §1.2.4]. In such uniform cases, we interpret the natural task of com-
puting the generic local zeta functions under consideration as computing the
(uniquely determined) rational functionW . For instance, if H(Z) is the discrete
Heisenberg group, then, by [23, Prop. 8.1],

ζ
6
H(Z)(s) = ζ (s)ζ (s−1)ζ (2s−2)ζ (2s−3)ζ (3s−3)−1 = ∏

p prime
W (p, p−s), (1)

where W (X ,Y ) = (1−X3Y 3)/
(
(1−Y )(1−XY )(1−X2Y 2)(1−X3Y 2)

)
.

1.2 Computations: limitations and previous work

Theoretical results on the subobject and representation zeta functions con-
sidered here frequently rely on impractical or even non-constructive meth-
ods. In particular, in one of the central papers in the area, du Sautoy and
Grunewald [16] showed that generic local subobject zeta functions are in
principle “computable” (in the sense that one can compute certain formulae
for them, see §3)—provided that one happens to know an embedded resolution
of singularities of some (usually highly singular) hypersurface inside some
affine space (of dimension > 6 in all cases of interest); Voll [55, §3.4] obtained
a similar result for representation zeta functions of nilpotent groups.

Apart from striking theoretical applications, the methods developed by
du Sautoy and Grunewald [16] and Voll [55] (and Stasinski and Voll [49]) have
also been successfully used to compute zeta functions in small examples (see,
in particular, the computation of du Sautoy and Taylor [18] of the subalgebra
zeta function of sl2(Z); for related computations, see [14,25,30]). However,
when it comes to explicit computations, the practical scope of these techniques
is usually rather limited.
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A substantial number of subobject zeta functions (primarily of nilpotent
groups and Lie algebras) were computed by Woodward [60]. He relied on a
combination of human guidance and computer calculations. Unfortunately, due
to a lack of documentation, his findings are hard to reproduce. A number of
ad hoc computations of representation zeta functions of nilpotent groups have
been carried out by Ezzat [22], Snocken [47], and Stasinski and Voll [50].

1.3 Topological zeta functions

A common catchphrase in the area is that topological zeta functions are ob-
tained from local ones (such as the ζ

6
Ĝp
(s) from above) by passing to a limit

“p→ 1”. Indeed, Denef and Loeser [13] introduced topological zeta functions
of polynomials by justifying that such a limit can be applied to Igusa’s local
zeta function (see [11,36] for introductions). Despite their arithmetic ancestry
(for Igusa’s local zeta function enumerates solutions to congruences), research
on topological zeta functions has been primarily motivated by questions from
singularity theory. In recent years, topological zeta functions of polynomials
have mostly been studied within the realm of motivic zeta functions.

Using such a “motivic” point of view, topological subobject zeta functions
were introduced by du Sautoy and Loeser [17]; these zeta functions are related
to, but different from, Evseev’s “reduced zeta functions” [21]. Apart from giving
a definition of these zeta functions, they also computed a few small examples.
Further examples were determined by the author [38,39] who also began an
investigation of topological representation zeta functions [40]. The topological
subobject and representation zeta functions studied by the author seem to
exhibit a number of features distinct from the well-studied case of topological
zeta functions of polynomials; we will discuss some of these features in §8.

1.4 Computations: a framework

The author’s articles [38–41] provide a practical framework for explicitly
computing numerous types of (generic) local and topological zeta functions in
“fortunate” cases related to geometric genericity conditions. The main purpose
of the present article is to provide a self-contained and unified introduction
that takes into account theoretical developments that occurred over the course
of the project.

In summary, the author’s methods for computing topological [38–40] or
generic local zeta functions [41] all proceed along the following lines:

1. (Translation.) Express the associated generic local zeta functions in terms
of p-adic integrals defined in terms of certain global “data”.
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2. (The simplify-balance-reduce loop.) After discarding finitely many primes,
attempt to write the integrals from the first step as sums of integrals of
the same shape but defined in terms of “regular” (i.e. sufficiently generic)
data.

3. (Evaluation.) Assuming the second step succeeds, explicitly compute “for-
mulae” for the generic local or topological zeta functions associated with
the integrals attached to the regular data from the second step.

4. (Final summation.) Add the formulae from the third step.

The first step is based on known results. For the computation of subobject
zeta functions, we use the formalism of “cone integrals” of du Sautoy and
Grunewald [16]. For representation zeta functions associated with unipotent
groups, we rely on the formulation in terms of p-adic integrals due to Stasinski
and Voll [49] (which extends Voll’s formalism from [55]); see also related
work of Avni et al. [2] on representation zeta functions of arithmetic groups.

The second step is concerned with manipulations of p-adic integrals rep-
resented in terms of the “toric data” from [39] or the “representation data”
from [40]. Either type of datum consists of algebraic ingredients (Laurent
polynomials) and convex-geometric data (“half-open cones”). Regularity is an
algebro-geometric genericity condition which allows us to invoke the machin-
ery developed in [38] in order to compute the p-adic integral in question (or
the associated topological zeta function). Being “balanced” is a much weaker
property and it is always possible to write the integral associated with an
arbitrary toric/representation datum as a sum of integrals associated with
balanced data—this corresponds to the middle part of the name of the second
step. In fortunate case (related to the notion of non-degeneracy from [38]),
applying the balancing procedure to our initial datum from the first step will
produce a family of regular data. The purpose of the reduction step is to modify
balanced but singular (i.e. not regular) data, the goal being to derive regular
data. This may or may not succeed for a given example and it is the main
reason why the author’s methods may fail for specific examples. While the final
summation step is mathematically trivial, it is often computationally daunting.

1.5 Overview

In §2, we recall definitions of the global and local zeta functions that we
consider. We then discuss the existence of “formulae” for generic local zeta
functions in §3. Topological zeta functions are the subject of §4. Prior to
presenting our computational framework and its computer implementation
in §6, we collect some background material from convex geometry in §5. As a
demonstration of the practical usefulness of the author’s methods, a number
of applications are discussed in §7. Finally, §8 is devoted to two particularly
interesting conjectures that arose from the author’s computations.
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2 Global and local zeta functions

2.1 Formal subalgebra, ideal, and submodule zeta functions

Let R be a commutative ring and let A be an R-algebra, i.e. an R-module
endowed with a multiplication A⊗R A→ A (which need not be associative
or Lie). A subalgebra of A is an R-submodule which is stable under the given
multiplication. As usual, by the index |A : U| of an R-submodule U 6 A, we
mean the cardinality of the R-module quotient A/U. Let a6n (A) denote the
number of subalgebras of A of index n. Assuming that these numbers are all
finite, we define the subalgebra zeta function of A to be the formal Dirichlet
series

ζ
6
A (s) =

∞

∑
n=1

a6n (A)n
−s.

If we only consider (2-sided R-)ideals of A, then we obtain the ideal zeta
function ζ /

A(s) of A. These notions are all natural generalisations of the subring
and ideal zeta functions introduced by Grunewald, Segal, and Smith [23].

Let M be an R-module and let Ω be a set of endomorphisms of M. Let
an(Ω yM) denote the number of submodules U ofM with |M : U|= n and such
that U is invariant under each element of Ω . Assuming that each an(Ω yM)
is finite, we define the submodule zeta function of Ω acting on M to be

ζ
6
ΩyM(s) =

∞

∑
n=1

an(Ω yM)n−s.

These zeta functions generalise those of Solomon [48]. It is frequently useful
to note that ζΩyM(s) only depends on the unitary associative subalgebra of
End(M) generated by Ω . Moreover, as pointed out in [38], submodule zeta
functions as defined here generalise the ideal zeta functions from above.

Generalising further, we could take into account a given R-module decom-
position of an R-algebra A or an R-module M and consider associated graded
counting problems as in [41, §3]; apart from the author’s work, such graded
zeta functions have recently been studied by Lee and Voll [33]. For the sake of
simplicity, while many results and ideas apply in this greater generality, in the
following, we only consider subalgebra and submodule zeta functions of the
form ζ

6
A (s) and ζΩyM(s) and we refer to these as subobject zeta functions.

2.2 Number fields and Euler products

The subalgebra and submodule zeta functions defined in §2.1 are formal
Dirichlet series. Further assumptions are needed for these to give rise to analytic
functions.
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We first set up some notation that will be used for the remainder of this
article. Let k be a number field with ring of integers o. Let Vk be the set of
non-Archimedean places of k; we identify VQ with the set of prime numbers.
For v ∈ Vk, let pv ∈ Spec(o) correspond to v, let kv denote the v-adic completion
of k, and let ov be the valuation ring of kv. We write Kv for the residue field of
kv and qv for its size.

For an o-object (e.g. an o-module) X, we write Xv for the associated ov-object
obtained after base change (e.g. X⊗o ov). Let A be an o-algebra, let M be an
o-module, and let Ω ⊆ End(M). We assume that A and M are both free of rank
d as o-modules. It is well-known (cf. [23, Prop. 1]) that ζ

6
A (s) and ζΩyM(s)

both converge for Re(s)> d. Furthermore, we obtain Euler products

ζ
6
A (s) = ∏

v∈Vk

ζ
6
Av
(s), ζΩyM(s) = ∏

v∈Vk

ζΩyMv(s);

see [38, Lem. 2.3]. In [16], du Sautoy and Grunewald showed that ζ
6
A (s)

and ζΩyM(s) have rational abscissae of convergence and admit meromorphic
continuation to some larger half-planes than their initial half-planes of conver-
gence. Furthermore, using their techniques (or the model-theoretic arguments
from [23]), each ζ

6
Av
(s) and ζΩyMv(s) is found to be rational in q−s

v .

2.3 Representation zeta functions of unipotent groups

Given a topological group G, let r̃n(G) denote the number of its continuous
irreducible n-dimensional complex representations, counted up to equivalence
and tensoring with continuous 1-dimensional representations (“twisting”).
The motivation for allowing 1-dimensional “twists” comes from the case of
nilpotent groups: while an infinite (discrete) T-group G has infinitely many
homomorphisms to GL1(C), Lubotzky and Magid [35] showed that each r̃n(G)
is finite. Following Hrushovski and Martin [24] (v1), if each r̃n(G) is finite, we
define the (twist) representation zeta function of G to be the formal Dirichlet
series

ζ
ĩrr
G (s) =

∞

∑
n=1

r̃n(G)n−s.

Let G be a T-group. Then ζ ĩrr
G (s) converges in some complex half-plane,

see [49, Lem. 2.1]. Moreover, crucial properties of ζ ĩrr
G (s) such as its abscissa

of convergence only depend on the commensurability class of G, see [20,
Cor. B]. It is well-known that commensurability classes of T-groups are in
natural bijection with isomorphism classes of unipotent algebraic groups over
Q. Following Stasinski and Voll [49], we consider representation zeta functions
of T-groups associated with unipotent algebraic groups over number fields.
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We first recall some facts on unipotent algebraic groups. Let Ud be the sub-
group scheme of GLd consisting of upper unitriangular matrices. An algebraic
group G over the number field k is unipotent if and only if it embeds into some
Ud⊗k; for other characterisations of unipotence, see [10, Ch. IV]. Let G be a
unipotent algebraic group over k. After choosing an embedding of G into some
Ud⊗k, we obtain an associated o-form G of G as a group scheme by taking
the scheme-theoretic closure of G within Ud⊗o. We regard the T-group G(o)
as a discrete topological group and for v ∈ Vk, we naturally regard G(ov) as a
pro-pv group, where pv is the rational prime contained in pv. By [49, Prop. 2.2],
ζ ĩrr
G(o)(s) = ∏v∈Vk

ζ ĩrr
G(ov)

(s). Duong and Voll [20] and Hrushovski et al. [24] have

shown that ζ ĩrr
G(ov)

(s) is rational in q−s
v for almost all v ∈ Vk and that ζ ĩrr

G(o)(s) has
rational abscissa of convergence. Duong and Voll also showed that, as in the
enumeration of subobjects in §2.2, ζ ĩrr

G(o)(s) admits meromorphic continuation
to the left of its abscissa of convergence.

3 Computability of generic local zeta functions

We now explain in which sense generic local subobject and representation
zeta functions are, in principle, computable. Let Z= (Zv(s))v∈Vk be a family of
local zeta functions defined in one of the following ways:

• Zv(s) = (1− q−1
v )d ·ζ6

Av
(s), where A is an o-algebra whose underlying o-

module is free of rank d.
• Zv(s) = (1− q−1

v )d ·ζΩyMv(s), where M is a free o-module of rank d and
Ω ⊆ End(M).

• Zv(s) = ζ ĩrr
G(ov)

(s), where G6 Ud⊗o is the natural o-form of G 6 Ud⊗k.

The role of the factors (1−q−1
v )d will be explained in §4. The global zeta

function associated with Z is in general a subtle analytic object which we
shall not consider further. Instead, we focus on the already quite difficult local
picture.

In the study of local zeta functions Zv(s) attached to a global object, the
exclusion of finite sets of exceptional places is often unavoidable. For example,
while the subalgebra zeta function of sl2(Zp) is given by a simple formula which
is valid for all odd primes p, the case p = 2 is exceptional; see [18]. Fortunately,
interesting properties of global zeta functions often remain unaffected when
finitely many places are dropped; this is, for instance, the case for the global ab-
scissae of convergence of subobject zeta functions, cf. [42, Lem. 5.3, Rem. 5.4].
Henceforth, we focus on the generic local zeta functions Zv(s) obtained after
discarding Zw(s) for finitely many w ∈ Vk.

As we mentioned above, Zv(s) is rational in q−s
v for almost every v ∈ Vk. The

task of “computing” Zv(s) then means to determine Wv(Y ) ∈Q(Y ) with Zv(s) =
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Wv(q−s
v ). The non-trivial fact that it is even possible to do this algorithmically

is a consequence of the proof of the following deep theorem.

Theorem 1. Let Z= (Zv(s))v∈Vk be a family of local subalgebra, submodule, or
representation zeta functions as above. There are k-varietiesV1, . . . ,Vr and rational
functions W1(X ,Y ), . . . ,Wr(X ,Y ) ∈Q(X ,Y ) such that for almost all v ∈ Vk,

Zv(s) =
r

∑
i=1

#V̄i(Kv) ·Wi(qv,q−s
v ), (2)

where V̄i denotes the reduction modulo pv of a fixed o-model of Vi.

Proof. For subalgebra and subobject zeta functions, this is due to du Sautoy
and Grunewald [16] (cf. [38, Ex. 5.11(iii)]). For representation zeta functions
associated with unipotent groups, it was proved by Stasinski and Voll [49, Pf
of Thm A] (building upon previous work of Voll [55, §3.4]).

Remark 1. A seemingly stronger version of Theorem 1 is given by [41, Thm 4.1].
This strengthened version takes into account not only the variation of the place v
but also allows local base extensions in a suitable manner. However, by [43],
the validity of (2) under variation of v (excluding finitely many exceptions)
already implies the validity of its analogues after local base extensions. This
observation allows us to rephrase some of our previous results more concisely
in the present article.

While the proofs of Theorem 1 in the sources cited above are constructive,
they all rely on some form of resolution of singularities for k-varieties; for
non-constructive model-theoretic approaches, see e.g. [24,37]. Even though
algorithms for constructive resolution of singularities are known (see [7,54]),
these are typically impractical in the present context. Nonetheless, we obtain
an algorithm which computes Zv(s), for each v ∈ Vk outside of some finite set,
as a rational function in q−s

v . It is tempting to regard the explicit construction
of (2) as the simultaneous computation of all generic local zeta functions Zv(s)
at once. This point of view, however, is not entirely satisfactory. For instance,
it is unclear how to decide if two formulae of the form (2) define the same
rational function for almost all v ∈ Vk.

For many examples of interest, the phenomenon of “uniformity” mentioned
in the introduction allows us to bypass such problems. We say that Z is uniform
if there exists W (X ,Y ) ∈ Q(X ,Y ) such that Zv(s) = W (qv,q−s

v ) for almost all
v ∈ Vk. While the author is not aware of any method for testing uniformity
of Z, if it is indeed uniform, our goal is to compute W (X ,Y ).

Before we proceed further with our work towards this goal, the author
would like to emphasise two points. First, he is not aware of a better general
notion of computing generic local zeta functions than to construct a formula (2)
(or a motivic analogue as in [17]). Secondly, he is not aware of a method for
carrying out such a construction which is both general and practical. These
two points explain why the author’s practical methods for computing generic
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local zeta functions, described in §6 below, are not general, i.e. they will not
succeed in all cases.

4 Topological zeta functions

We now introduce the protagonist of [38–40]: topological zeta functions. These
functions are defined analogously to topological zeta functions of polynomials,
as introduced by Denef and Loeser [13]; topological subobject zeta functions
were first defined by du Sautoy and Loeser [17].

4.1 An informal “definition”

Informally, we obtain the topological zeta function associated with a family
Z= (Zv(s))v∈Vk as in Theorem 1 by taking the limit “qv→ 1”, obtained as the
constant term in the binomial expansion of a “generic” Zv(s) as a series in
qv−1. For example, by [49, Thm B], if H= U3 is the Heisenberg group scheme,
then for each v ∈ Vk,

ζ
ĩrr
H(ov)

(s) =
1−q−s

v

1−q1−s
v

(3)

and by symbolically expanding

qa−bs
v = (1+(qv−1))a−bs =

∞

∑
`=0

(
a−bs

`

)
(qv−1)`,

we obtain ζ ĩrr
H(ov)

(s) = s
s−1 +O(qv−1) whence the topological representation

zeta function of H is ζH,top(s) = s/(s−1). By [43, §4], this informal “definition”
of topological zeta functions is rigorous in uniform cases such as (3). However,
the author is not aware of a definition of topological zeta functions which is at
the same time elementary, general, rigorous, and short. A pragmatic motivation
for studying topological zeta functions is that they turn out to be the type of
mathematical invariant which, while hard to define, can often be computed and
studied effectively. Moreover, as observed by Denef and Loeser [13, Thm 2.2],
by the very nature of the limit “qv→ 1” used to define them, topological zeta
functions preserve interesting analytic properties of their local relatives.
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4.2 A rigorous definition

Nowadays, topological zeta functions are most commonly studied in the context
of motivic zeta functions and integrals. In contrast, the following exposition is
based on the author’s axiomatisation [38, §5] of the original “arithmetic” defini-
tion of the topological zeta function of a polynomial by Denef and Loeser [13].

A rigorous notion of the limit “qv→ 1” is based on a formula (2). Specifically,
we define such a limit separately for the terms “#V̄i(Kv)” and “Wi(qv,q−s

v )” and
then combine them in the evident way.

First, we formalise taking a limit “qv→ 1” of W (qv,q−s
v ). For e ∈Q[s], write

Xe := ∑
∞
`=0
(e
`

)
(X − 1)` ∈ Q[s][[X − 1]]. The map f (X ,Y ) 7→ f (X ,X−s) yields an

embedding of Q(X ,Y ) into Q(s)((X−1)). In general, W (X ,X−s) need not be a
power series in X−1 forW (X ,Y )∈Q(X ,Y ). We will restrict attention to certain
rational functions for which it is:

Definition 1.

1. Let M[X ,Y ]⊆Q(X ,Y ) be the Q-algebra consisting of those rational func-
tions W (X ,Y ) ∈ Q(X ,Y ) with W (X ,X−s) ∈ Q(s)[[X − 1]] and such that
W (X ,Y ) = f (X ,Y )/

(
(1−Xa1Y b1) · · ·(1−XarY br)

)
for non-zero (a1,b1), . . . ,

(ar,br) ∈ Z2 and a suitable f (X ,Y ) ∈Q[X±1,Y±1].
2. Write bW (s)c for the image of W (X ,Y ) ∈M[X ,Y ] under “formal reduction

modulo X−1”, i.e. under the map f (X ,Y ) 7→ f (X ,X−s) mod (X−1).

The factors (1−q−1
v )d in the definition of Zv(s) in §3 were included to ensure

the validity of the following:

Lemma 1. We may assume that W1(X ,Y ), . . . ,Wr(X ,Y ) ∈M[X ,Y ] in Theorem 1.

Proof. Combine [38, Thm 5.16] and [40, Lem. 3.4].

It remains to define a limit “qv → 1” of #V̄i(Kv) in (2). For background
and further details on the following, we refer to [45, §4]. For v ∈ Vk, fix an
algebraic closure K̄v of Kv and denote by K

( f )
v the extension of Kv of degree f

within K̄v. Let V be a k-variety. As above, we fix an o-model, V say, of V and
given v ∈ Vk, we let V̄ denote the reduction modulo pv of V. It follows from
Grothendieck’s trace formula and comparison theorems for `-adic cohomology
that for almost all v ∈ Vk, there are finitely many non-zero complex numbers
αi j (i, j > 0) such that for all f ∈ N, #V̄ (K

( f )
v ) = ∑i, j(−1)iα

f
i j and, moreover,

#V̄ (K
(0)
v ) := ∑i, j(−1)iα0

i j = χ(V (C)); here, the topological Euler characteristic
χ(V (C)) is taken with respect to an arbitrary embedding of k into C. Numerous
results in [45] justify defining #V̄ (K

(0)
v ) as χ(V (C)). For example, by [41, Lem.

7.1] (an application of Chebotarev’s density theorem similar to arguments
from [45]), if f (X) ∈ Z[X ] satisfies #V̄ (Kv) = f (qv) for almost all v ∈ Vk, then
χ(V (C)) = f (1).
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In summary, our candidate for the topological zeta function associated with
a family Z = (Zv(s))v∈Vk as in Theorem 1 is ∑

r
i=1 χ(Vi(C)) · bWi(s)c ∈ Q(s). It

remains to show that this rational function does not depend on the choice of
the particular formula (2). This is the content of the following theorem.

Theorem 2. For v ∈ Vk, let Zv(s) be an analytic function on some complex right
half-plane. Let V1, . . . ,Vr be k-varieties, let W1(X ,Y ), . . . ,Wr(X ,Y ) ∈M[X ,Y ], and

suppose that for almost all v ∈ Vk, Zv(s) =
r
∑

i=1
#V̄i(Kv) ·Wi(qv,q−s

v ). Then the fol-

lowing rational function is independent of the Vi and the Wi(X ,Y ):

Ztop(s) :=
r

∑
i=1

χ(Vi(C)) · bWi(s)c ∈Q(s).

Proof. Combine [38, Thm 5.12] and [43, Thm 4.2].

Theorem 2 generalises an insight of Denef and Loeser [13, (2.4)] at the
heart of their original definition of topological zeta functions of polynomials.

Definition 2 ([38, Def. 5.17]; [40, Def. 3.5]). In the setting of Theorem 1, we
define the topological subalgebra, submodule, or representation zeta function
ζ
6
A,top(s), ζΩyM,top(s), or ζ ĩrr

G,top(s), respectively, to be Ztop(s) ∈Q(s), where Z is
defined as in §3.

Up to a simple shift, our definition of topological subalgebra zeta functions
is consistent with that of du Sautoy and Loeser [17, §8].

Example 1. Let h be the Heisenberg Lie Z-algebra. The subalgebra zeta function
of h coincides with the subgroup zeta function of the discrete Heisenberg group
in (1). Hence, for each prime p, ζ

6
h⊗Zp

(s) =W (p, p−s), where W (X ,Y ) is given
after (1). Thus, the topological subalgebra zeta function of h is the constant
term of (1−X−1)3W (X ,X−s) as a series in X−1, i.e.

ζ
6
h,top(s) =

3s−3
s(s−1)(2s−2)(2s−3)

=
3

2s(s−1)(2s−3)
.

Observe that the real poles of ζ
6
h⊗Zp

(s) and ζ
6
h,top(s) coincide. While this is not

a general phenomenon, Denef and Loeser [13, Thm 2.2] showed that poles of
topological zeta functions always give rise to poles of suitable associated local
zeta functions. In view of Igusa’s Monodromy Conjecture (see [11, §2.3]), this
connection between poles of local and topological zeta functions provides one
of the key motivations for studying the latter.

Example 1 is misleading in the simplicity of the formula for the topological
zeta function and its derivation from knowledge of the associated local zeta
functions. Indeed, one of the key features of the method for computing topo-
logical zeta functions in §6 is that it does not rely on computations of local
zeta functions.
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5 Tools from convex geometry

We briefly recall basic notions from convex geometry needed in the following.

5.1 Cones and generating functions

For details on most of the following, see e.g. [4]. A (linear) half-space in Rn

is a set of the form {ω ∈ Rn : 〈α,ω〉> 0}, where α ∈ Rn is non-zero and 〈 ·, ·〉
denotes the usual inner product. If α can be chosen to have rational entries,
then the half-space is rational. By a cone in Rn, we mean a finite intersection of
linear half-spaces; note that cones are (convex) polyhedra. If these half-spaces
can all be taken to be rational, then we say that the cone is rational. By a
half-open cone, we mean a set of the form C0 = C \ (C1∪·· ·∪Cr), where C is
a cone and each Ci is a face of C (i.e. the intersection of C with a supporting
hyperplane). If the Ci can be chosen to be precisely the faces of C other than C
itself, then C0 is a relatively open cone. If C can be chosen to be rational, then we
say that C0 is rational. We say that C0 is pointed if its closure does not contain a
non-zero linear subspace. Supposing that C0 is rational and pointed, it is well-
known that the generating function ∑ω∈C0∩Zn λλλ

ω ∈Q[[λ1, . . . ,λn]] enumerating
(integer) lattice points in C0 is given by a rational function in Q(λ1, . . . ,λn).
The standard proof of rationality proceeds by triangulating the closure of C0
followed by an application of the inclusion-exclusion principle. This argument
does not, in general, lead to a practical algorithm. A more sophisticated method
for computing generating functions is “Barvinok’s algorithm” as described by
Barvinok and Woods [5]. The implementation of this algorithm as part of
LattE [3] plays a vital role in the author’s software Zeta, to be described below.

Half-open cones are convenient for theoretical purposes. However, they
appear scarcely in the literature and software usually does not support them
directly. Fortunately, as explained in [39, §8.4], we may perform all com-
putations required by the method described below using suitable polyhedra
(non-canonically) attached to the half-open cones in question.

5.2 Newton polytopes and initial forms

Most of the following is well-known but the term “balanced” is non-standard;
for references, see [38, §4.1].

Let f ∈ k[XXX±1] := k[X±1
1 , . . . ,X±1

n ]. Write f = ∑α∈Zn cα XXXα , where cα ∈ k and
cα = 0 for almost all α ∈ Zn. Let supp( f ) := {α ∈ Zn : cα 6= 0} and define the
Newton polytope New( f ) of f to be the convex hull of supp( f ) in Rn. Suppose
that f 6= 0 so that New( f ) 6= /0. For ω ∈ Rn, let m( f ,ω) := min

α∈supp( f )
〈α,ω〉. We
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define the initial form of f in the direction ω to be

inω( f ) := ∑
α∈supp( f ),
〈α,ω〉=m( f ,ω)

cα XXXα .

Definition 3 ([39, Def. 5.1(i)]). Let /0 6= M ⊆ Rn and let 0 6= f ∈ k[XXX±1]. We
say that f is M -balanced if ω 7→ inω( f ) is constant on M .

Define an equivalence relation ∼ f on Rn by letting ω ∼ f ω ′ if and only if
inω( f ) = inω ′( f ). Thus, f is M -balanced if and only if M is contained in one of
the equivalence classes of ∼ f . We will now recall descriptions of these classes
in terms of the Newton polytope of f .

Given a non-empty polytope P⊆Rn and ω ∈Rn, let faceω(P) be the face of
P consisting of those α ∈Pwhich minimise 〈α,ω〉 over P. The (relatively open)
normal cone of a face τ ⊆P is Nτ(P) := {ω ∈Rn : faceω(P)= τ}. The equivalence
classes of ∼ f from above are precisely the normal cones Nτ(New( f )) for faces
τ ⊆New( f ). In particular, the finite set {inω( f ) : ω ∈Rn} is in natural bijection
with the set of faces of New( f ). The following is now obvious.

Lemma 2 ([39, Lem. 5.3]). Let /0 6= M ⊆ Rn and 0 6= f ∈ k[XXX±1]. Then f is
M -balanced if and only if there exists a face τ ⊆New( f ) with M ⊆Nτ(New( f )).

Now suppose that fff = ( f1, . . . , fr) for non-zero f1, . . . , fr ∈ k[XXX±1]. One can
show (cf. [38, §3.3]) that the equivalence classes of ∼ fff defined by letting
ω ∼ fff ω ′ if and only if inω( fi) = inω ′( fi) for i = 1, . . . ,r are precisely the normal
cones associated with faces of New( f1 · · · fr).

6 A framework for computing zeta functions

In this section, we provide a unified summary of the author’s methods for
computing generic local and topological zeta functions. For the sake of a more
streamlined exposition, we only spell out the case of subalgebra zeta functions.

We begin by recalling the translation step (§6.1) which reduces the compu-
tation of local zeta functions to that of computing p-adic integrals. As we will
explain in §6.2, these integrals can be encoded in terms of objects that we call
“toric data”. In §6.3, we introduce the key notions of “balanced” and “regular”
toric data. The “simplify-balance-reduce loop” at the heart of our method is
discussed in §6.4. Assuming its successful completion, we face different tasks
depending on whether we seek to compute (generic) local or topological zeta
functions; these tasks are discussed in §6.5.
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6.1 p-Adic integration

Let A be an o-algebra which is free of rank d as an o-module. By choosing a basis,
we identify A and od as o-modules. This allows us to parameterise submodules
of A using the row spans of upper-triangular d× d matrices. Building upon
work of Grunewald, Segal, and Smith [23, §3], du Sautoy and Grunewald [16,
Thm 5.5] observed that those submodules of A which are subalgebras can be
characterised in terms of polynomial divisibility conditions in the entries of
matrices. We formalise this as in [38, Rem. 2.7(ii)].

Let R := o[XXX ] := o[Xi j : 1 6 i 6 j 6 d] and C := [δi6 j ·Xi j] ∈ Trd(R), where
δi6 j = 1 if i6 j and δi6 j = 0 otherwise. We identify Rd =A⊗oR and in particular
regard Rd as an R-algebra. Let C1, . . . ,Cd be the rows of C. Let adj(C) ∈ Trd(R)
be the adjugate matrix of C; hence, over k(XXX), adj(C) = det(C)C−1.

Henceforth, for v ∈ Vk, let µv denote the additive Haar measure on kv with
µv(ov) = 1; we use the same symbol for the product measure on kd

v and Trd(kv).
Moreover, we let | · |v denote the usual v-adic absolute value with |π|v = q−1

v for
π ∈ pv \p2

v . Finally, we write ‖A‖v := sup(|a|v : a ∈ A). The following expresses
each ζ

6
Av
(s) as a “cone integral” in the sense of du Sautoy and Grunewald [16].

Theorem 3 ([16, Thm 5.5]; cf. [23, Prop. 3.1]). Let fff ⊆ o[XXX±1] consist of the
non-zero entries of all tuples of the form det(C)−1(CmCn)adj(C) for 1 6 m,n 6 d.
Then for each v ∈ Vk,

ζ
6
Av
(s) = (1−q−1

v )−d
∫

{
xxx∈Trd(ov) :‖ fff (xxx)‖v61

}
d

∏
i=1
|xii|s−i

v dµv(xxx). (4)

We remark that local submodule zeta functions can be similarly expressed
in terms of p-adic integrals of the same shape as (4).

Let G 6 Ud⊗k be a unipotent algebraic group over k with associated o-form
G6 Ud⊗o. Stasinski and Voll [49, §2.2.3] expressed ζ ĩrr

G(ov)
(s), for almost all

v ∈ Vk, in terms of a p-adic integral defined using a fixed set of globally defined
polynomials. While the author’s framework is flexible enough to accommodate
these integrals (see [38, Def. 4.6] and [40, §5.1]), for the sake of simplicity, in
the following, we only consider integrals of the form (4).

6.2 Toric data and associated integrals

Henceforth, in addition to k, we fix an “ambient space” of dimension n; in the
setting of Theorem 3, our ambient space will be Trd so that n = d(d +1)/2.
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Definition 4 ([39, Def. 3.1]). A toric datum is a pair T = (C0; fff ), where C0 ⊆
Rn
>0 is a half-open cone (see §5.1) and fff = ( f1, . . . , fr) is a finite family of

non-zero Laurent polynomials fi ∈ k[XXX±1] := k[X±1
1 , . . . ,X±1

n ].

Henceforth, we tacitly assume that C0 6= /0. We now explain how a toric da-
tum T= (C0; fff ) gives rise to p-adic integrals. For v∈Vk and xxx∈ kn

v , write v(xxx) =(
v(x1), . . . ,v(xn)

)
; an elementary but crucial observation is that if x1 · · ·xn 6= 0

and α ∈ Zn, then v(xxxα) = 〈α,v(xxx)〉. Define C0(ov) :=
{

xxx ∈ on
v : v(xxx) ∈ C0

}
.

Definition 5. Let T = (C0; fff ) be a toric datum, βββ = (β1, . . . ,βm) for β1, . . . ,βm ∈
Nn

0, v ∈ Vk, and let s1, . . . ,sm be complex variables. Define

ZT,βββ
v (s1, . . . ,sm) :=

∫
{xxx∈C0(ov):‖ fff (x)‖v61}

|xxxβ1 |s1
v · · · |xxx

βm |sm
v dµv(xxx). (5)

Thus, the integral in (4) is a univariate specialisation of (5) (with C0 = Rn
>0).

6.3 Balanced and regular toric data

We will now explain how under a suitable regularity hypothesis for a toric
datum T, we may construct an explicit (multivariate analogue of) formula (2)
for the integrals ZT,βββ

v (s1, . . . ,sm). Write Tn := Spec(Z[X±1
1 , . . . ,X±1

n ]) and identify
Tn(R) = (R×)n for any commutative ring R. Let k̄ be an algebraic closure of k.

Definition 6 ([39, Def. 5.1(ii), Def. 5.5]). Let T = (C0; fff ) be a toric datum
with fff = ( f1, . . . , fr) as above.

• T is balanced if fi is C0-balanced (see Definition 3) for i = 1, . . . ,r.
• T is regular if it is balanced and the following holds:
for each J ⊆ {1, . . . ,r} and uuu ∈ Tn(k̄) with f j(uuu) = 0 for all j ∈ J, the rank of[

∂ inω( f j)(uuu)
∂Xi

]
i=1,...,n;

j∈J

is #J, where ω ∈C0 is arbitrary (the particular choice of ω being irrelevant).

Using Lemma 2 and the comments following it, we may test if a toric datum
T is balanced. As explained in [39, §5.2], regularity can then be tested using
Gröbner bases techniques.

Theorem 4 ([39, Thm 5.8]). Let T = (C0; fff ) be a regular toric datum, where
fff = ( f1, . . . , fr). Let βββ = (β1, . . . ,βm) be as in Definition 5. For J ⊆ {1, . . . ,r}, let
V ◦J ⊆Tn⊗k be the subvariety defined by f j = 0 for j ∈ J and fi 6= 0 for i 6∈ J. Then
there are explicit WJ ∈Q(X ,Y1, . . . ,Ym) such that for almost all v ∈ Vk,
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ZT,βββ
v (s1, . . . ,sm) = q−n

v ∑
J⊆{1,...,r}

#V̄ ◦J (Kv) ·(qv−1)#J ·WJ(qv,q−s1
v , . . . ,q−sm

v ). (6)

The WJ in Theorem 4 are given explicitly in the sense that they arise via (ex-
plicit) monomial substitutions from generating functions enumerating lattice
points inside certain half-open cones C J

0 ⊆ C0×R#J; see [39, §5.5] for details.
Theorem 4 is an algorithmically-minded consequence of [38, Thm 4.10].

The latter theorem provides formulae such as (6) for p-adic integrals of a quite
general shape under suitable “non-degeneracy” conditions (closely related to
the above concept of regularity for toric data). Such notions of non-degeneracy
have their origin in work of Khovanskii [27,28] and others [6,31,52] in toric
geometry. They also found numerous applications in the study of Igusa’s lo-
cal zeta function, a close relative of the zeta functions studied here. Indeed,
[38, Thm 4.10] was inspired by (and generalises) a result of Denef and Hoor-
naert [12, Thm 4.2]; another source of inspiration is given by work of Veys
and Zúñiga-Galindo [53, §4]. For a more detailed comparison between the
author’s approach and previous work in the literature, we refer to [38, §4.4].

Much like (2), the formalism for attaching topological zeta functions to
families of local ones in §4.2 admits a natural multivariate version; see
[38, §5]. However, as a technical inconvenience, we cannot pass directly
from (6) to the associated topological zeta function since the Laurent se-
ries (X −1)#JWJ(X ,X−s1 , . . . ,X−sm) in X −1 over Q(s1, . . . ,sm) typically fail to
be power series in X−1. Fortunately, as explained in [39, §6.4], it turns out
that we may rewrite (6) (altering both the varieties and the rational functions
involved in the process) in a way that allows us to pass to the associated
topological zeta function analogously to Theorem 2. We note that passing from
multivariate local zeta functions to topological ones is compatible with suitable
univariate specialisations such as the ones used here; see [38, Rem. 5.15].

6.4 The simplify-balance-reduce loop

We now discuss the heart of our method. Starting with an o-algebra A, we seek
to construct a formula (2) for its generic local subalgebra zeta functions. As
we have seen, these zeta functions are expressible in terms of p-adic integrals
attached to an initial toric datum T0 = (Rn

>0; fff 0), where fff 0 is a set of Laurent
polynomials such as the set fff in Theorem 3. (The integrand encoded by βββ in
Definition 5 is all but insignificant and will be ignored in the following.) Our
method is based on several operations applied to toric data as part of a loop.
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Overview

At all times of our loop, we maintain a finite collection, T say, of toric data
such that for almost all v ∈ Vk, the integral (5) associated with our initial toric
datum T0 (essentially the subalgebra zeta function of Av) is given by the sum
of the integrals corresponding to the elements of T ; similarly, the topological
zeta function associated with T0 (or, equivalently, the topological subalgebra
zeta function of A) will be expressed as a sum of the topological zeta functions
attached to the elements of T . Initially, T only consists of T0. We repeatedly
process those elements of T that we have not already found to be regular.
More precisely, if any such element, T say, fails to meet certain criteria, then
we derive new toric data T1, . . . ,TN , say, from T, remove T from T , insert
T1, . . . ,TN into T , and resume processing the elements ofT . We now give
details on how exactly we process a given toric datum T = (C0; fff ) ∈T .

Simplification

First, we “simplify” T. The key observation is that wemay replace T by any other
toric datum if almost all of the associated p-adic integrals remain unchanged.
Apart from obvious operations such as removing duplicates or constants from fff ,
we are e.g. also free to replace fff by another finite generating set of the same
k[XXX ]-submodule of k[XXX±1]. Moreover, we may remove all Laurent monomials
from fff for an integrality condition “|xxxα |v 6 1” is equivalent to the constraint
“〈α,v(xxx)〉> 0” on v(xxx) which can be encoded by shrinking C0 accordingly. The
precise operations that we carry out are explained in [39, §§7.1–7.2].

Balancing

Suppose that T has been simplified but that it is not balanced. By considering
the non-empty intersections of C0 with the normal cones of New(∏ fff ) (see
§5.2), we obtain a partitionC0 =

⋃N
i=1 C i

0 such that each Ti :=(C i
0; fff ) is balanced.

We then remove T from T and insert T1, . . . ,TN .

Reduction

It remains to consider the case that T is singular, i.e. balanced but not regular.
The author is unaware of a practically useful method for dealing with these
cases in general. Instead, the “reduction step” from [39, §7.3] is an attempt
to repair certain specific types of singularity which the author frequently
encountered in examples of interest. This method may not lead to immediate
improvements and to ensure termination, we impose a bound on the number of
subsequent reduction steps. If this number is exceeded, we let our method fail.
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Instead of reiterating [39, §7.3], we illustrate the reduction step by dis-
cussing the special case that gave rise to the general form. Namely, suppose that
T = (C0; fff ) is balanced, where fff = ( f1, . . . , fr) and r > 2. Choose ω ∈ C0. Fur-
ther suppose that there are α1,α2 ∈ Zn and g ∈ k[XXX±1] such that inω( fi) = XXXαig
for i = 1,2; write hi = fi−XXXαig. We assume that g consists of more than one
term (i.e. #supp(g)> 2) whence T is singular. We decompose C0 into half-open
cones C6

0 and C>
0 defined by

C6
0 := {λ ∈ C0 : 〈α1,λ 〉6 〈α2,λ 〉} and

C>
0 := {λ ∈ C0 : 〈α1,λ 〉> 〈α2,λ 〉}.

Instead of T, we may then consider the two toric data T6 := (C6
0 ; fff ) and

T> := (C>
0 ; fff ). We only consider T6 in the following, the case of T> being

analogous. We also assume that C6
0 is non-empty. If xxx ∈ on

v with ν(xxx) ∈ C6
0 ,

then v(xxxα2−α1)> 0. It follows that ZT6,βββ
v (s1, . . . ,sm) remains unaffected if we

“remove” one reason for the singularity of T6, namely the summand “XXXα2g” of
f2, by replacing f2 by f ′2 := f2−XXXα2−α1 f1 = h2−XXXα2−α1h1. The resulting toric
datum may no longer be balanced. We therefore process it using the steps
discussed so far in the hope that eventually, all singularities will be successfully
removed.

6.5 Processing the pieces

Assuming successful termination of the “simplify-balance-reduce loop”, we
obtain a formula (2) for ζ

6
Av
(s) (and almost every v∈Vk) by applying Theorem 4

to each regular toric datum that we constructed. In this formula, theVi are given
as subvarieties of tori Tni ⊗ k and the Wi(X ,Y ) are “described” combinatorially
(but not yet computed) in terms of generating functions enumerating lattice
points inside certain half-open cones. Our next step is to carry out further
computations involving the Vi and Wi(X ,Y ). These computations will depend
on whether we seek to compute topological or generic local zeta functions

Topological computations

We first consider the computation of ζ
6
A,top(s) ∈Q(s). As we mentioned above,

by rewriting the formulae obtained using Theorem 4 as in [39, §6.4], we may
assume that Wi(X ,Y ) ∈M[X ,Y ] for each i in (2); the Vi will still be given as
subvarieties (closed ones even) of tori Tni⊗k. We are thus left with three steps:

(T1) compute each χ(Vi(C)),
(T2) compute each bWi(s)c, and
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(T3) compute
r
∑

i=1
χ(Vi(C)) · bWi(s)c as a fraction of polynomials from Q[s].

Regarding (T1), there are general-purpose algorithms for computing Eu-
ler characteristics of varieties; see, in particular, work of Aluffi [1]. We do
not make any use of these techniques in practice. Instead, we rely on the
following two ingredients. First, the Bernstein-Khovanskii-Kushnirenko (BKK)
Theorem [28, §3, Thm 2] provides a convex-geometric formula for the topo-
logical Euler characteristic of (the complex analytic space associated with) a
closed subvariety f1 = · · ·= fm = 0 of Tn⊗C if ( f1, . . . , fm) is non-degenerate in
the sense of [27, §2]. Khovanskii’s notion of non-degeneracy is closely related
to our concept of regularity; see [38, §4.2]. In particular, if the reduction step
from §6.4 should not be needed during our computations, then the BKK Theo-
rem can be applied to all varieties that we encounter; cf. [39, Rem. 6.15(ii)].
Secondly, we employ a recursive procedure which seeks to compute topological
Euler characteristics associated with closed subvarieties of Tn⊗ k by decom-
posing these varieties using subvarieties of lower-dimensional tori. While this
procedure is not guaranteed to work in all cases, is has proven to be very useful
in practice. Details are given in [39, §6.6] (with some further explanations in
[41, §5]).

For (T2), in case Wi(X ,Y ) is obtained using the method from above, the
computation of bWi(s)c is described in [39, §6.5]. An important observation
(already used implicitly by Denef and Loeser [13, §5]) is that while Wi(X ,Y )
arises from a generating function enumerating lattice points inside a half-open
cone, D0 say, bWi(s)c can be written as a sum of rational functions indexed by
the cones of maximal dimension in a triangulation of the closure of D0.

Finally, step (T3) remains. As described in [39, §8.3], we can easily keep
track of a common denominator of all bWi(s)c which allows us to recover
ζ
6
A,top(s) using evaluation at random points and polynomial interpolation. This
concludes our method for computing topological subalgebra zeta functions.

Generic local computations

Given an associated formula (2) obtained as above, we consider the com-
putation of the generic local subalgebra zeta functions ζ

6
Av
(s). We make an

assumption which is even stronger than uniformity as defined in §3. Namely, we
assume that for i = 1, . . . ,r, there exists ci(X) ∈ Z[X ] such that #V̄i(Kv) = ci(qv)
for almost all v ∈ Vk. The author would like to note that he is not aware of any
method for deciding if this assumption is satisfied (or for computing the ci(X)
if it is); for computations in possibly non-uniform settings, see [41, §§5–6,8].

Inspired by steps (T1)–(T3) from above, we proceed as follows:

(L1) attempt to construct each ci(X) ∈ Z[X ] (failure being an option),
(L2) compute each Wi(X ,Y ) as a sum of bivariate rational functions, and
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(L3) computeW (X ,Y )∈Q(X ,Y ) with Z6
Av
(s) =W (qv,q−s

v ) for almost all v∈Vk.

For (L1), we extend ideas from the computation of Euler characteristics in
(T1). We sketch the key ingredients; for details, see [41, §5]. Let f1, . . . , fm ∈
k[XXX±1] = k[X±1

1 , . . . ,X±1
n ] be non-zero. Let V ⊆ Tn⊗ k be defined by f1 = · · ·=

fm = 0. We seek to find c(X) ∈ Z[X ] such that #V̄ (Kv) = c(qv) for almost all
v ∈ Vk. This is trivial for n = 0. For n = 1, the Euclidean algorithm allows us to
assume that m = 1. We then check if the roots of f1 lie in k (in which case, we
take c(X) to be the number of distinct roots) and abort if it does not. We may
thus assume n > 1. Similarly to the simplification step in §6.4, we use the fact
that we are free to replace the fi by any collection of Laurent polynomials which
generates the same ideal of k[XXX±1]. As one potential reduction of dimensions,
we then construct an isomorphism V ≈k U×k (Tn−d⊗ k), where U is a closed
subvariety of Td⊗k and d = dim(New( f1 · · · fm)); see [38, §6.1] and [39, §6.3].
Other potential reductions of dimensions are obtained by trying to solve each
fi = 0 for one of the variables as in [41, Lem. 5.1–5.2].

For (L2), we use algorithms due to Barvinok and others [5] for computing
and manipulating generating functions associated with polyhedra. Using these
methods, each Wi(X ,Y ) will be expressed as a sum of rational functions. For
(L3), similarly to (T3), we write the final sum of (2) over a common denom-
inator. However, due to the frequently large degree of said denominator (in
X and Y), at least a naive variation of the approach based on polynomial
interpolation from (T3) is often impractical. Instead, after grouping together
rational functions based on heuristics (partially inspired by ideas of Wood-
ward [60, §2.5]), we add all numerators over our common denominator. This
is usually by far the most computationally involved step of all.

6.6 Zeta

The author’s software package Zeta [44] for Sage [51] implements his methods
for computing generic local and topological subalgebra, submodule, and repre-
sentation zeta functions; moreover, Zeta offers basic support for Igusa-type zeta
functions associated with polynomials and polynomial mappings (as in [53]
but using the author’s notion of non-degeneracy instead of [53, Def. 4.1]).
Apart from functionality built into Sage, Zeta makes critical use of Singular [9]
(polynomial arithmetic, Gröbner bases), Normaliz [8] (triangulations), and
LattE [3] (generating functions associated with polyhedra).

7 Highlights of computations using Zeta

The topological subalgebra and representation zeta functions as defined in §4.2
are all invariant under base change in the sense that they only depend on the C-
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isomorphism class of A⊗o C and G⊗o C, respectively; see [38, Prop. 5.19] and
[40, Prop. 4.3]. Apart from the C-isomorphism class of a single 5-dimensional
algebra, dubbed Fil4 by Woodward, the topological subalgebra zeta functions
of nilpotent Lie algebras of dimension 6 5 can all be derived (via [43, §4])
from previous p-adic calculations. The algebra Fil4 has a basis (e1, . . . ,e5)
with [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5, [e2,e3] = e5 and such that all re-
maining commutators of basis elements (except for those implied by anti-
commutativity) are zero. Based on computations using Zeta, the following
was first announced in [38, §7.3]:

Theorem 5 ([39, §9.1]).

ζFil4,top(s) =
(
392031360s9−5741480808s8 +37286908278s7−

140917681751s6 +341501393670s5−550262853249s4+

589429290044s3−404678115300s2 +161557332768s−

28569052512
)
/
(
3(15s−26)(7s−12)(7s−13)(6s−11)3

(5s−8)(5s−9)(4s−7)2(3s−4)(2s−3)(s−1)s
)
.

The seemingly bizarre numbers in the numerator are consistent with the
four conjectures stated in [38, §8], two of which we will discuss below. The
generic local subalgebra zeta functions associated with Fil4 remain unknown.

Prior to the following, sl2(Q) was the only example of an insoluble Lie
algebra whose associated generic local subalgebra zeta functions had been
computed.

Theorem 6 ([41, Thm 9.1]). For almost all primes p, ζ
6
gl2(Zp)

(s) =W (p, p−s),
where

W (X ,Y ) =
(
−X8Y 10−X8Y 9−X7Y 9−2X7Y 8 +X7Y 7−X6Y 8−X6Y 7 +2X6Y 6

−2X5Y 7 +2X5Y 5−3X4Y 6 +3X4Y 4−2X3Y 5 +2X3Y 3−2X2Y 4

+X2Y 3 +X2Y 2−XY 3 +2XY 2 +XY +Y +1
)
/
(
(1−X7Y 6)

(1−X3Y 3)(1−X2Y 2)2(1−Y )
)
.

Noting that gl2(Zp)≈ sl2(Zp)⊕Zp for p 6= 2, this formula in particular illus-
trates the generally wild effect of direct sums on subalgebra zeta functions.
We note that Theorem 6 is consistent with results of Voll [55, Thm A] and
Evseev [21, Thm 3.3].

Other computations of particular interest are that of ζUd(Zp)yZd
p
(s) for d 6 5

and almost all primes p (see [41, §9.4]); the formula for d = 5 fills about three
pages. These computations are consistent with functional equations recently
established by Voll [58, Thm 5.5] as well as with [42, Prop. 6.1] (which implies
that the abscissa of convergence of ζUd(Z)yZd (s) is 1 for any d > 1).

Regarding representation zeta functions, extending previous work of others,
the author (with the help of Zeta) finished the determination of the generic
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local representation zeta functions of unipotent algebraic groups of dimension
at most 6 over number fields (see [41, §8]); we note that there are infinitely
many such groups of dimension 6. The representation zeta functions of Ud(Zp)
are only known for d 6 5; the case d = 5 was settled, for almost all p, using
Zeta (see [41, Thm 8.4]).

For comments on limitations of the author’s method, see [39, §8.2] and
[41, §6.4]. In particular, to the author’s knowledge, not a single explicit ex-
ample of a (local or topological) subalgebra or ideal zeta function associated
with a nilpotent Lie algebra of class at least 5 is known. It seems likely that
new theoretical insights will be needed to compute such examples. Regard-
ing practical limitations, Zeta can express the generic local subalgebra zeta
functions associated with Fil4 in terms of a sum of bivariate rational functions
(thus, in particular, proving uniformity in the sense of §3). However, due to
the number and complexity of these rational functions, the author has so far
been unable to calculate their sum as a (reduced) fraction of polynomials. The
author feels cautiously optimistic that further developments of computational
techniques will eventually overcome such obstacles.

8 Conjectures

8.1 Local and topological zeta functions at zero

Every non-trivial local subobject zeta function known to the author has a pole
at zero. No explanation of this phenomenon seems to have been provided.
Under nilpotency assumptions, much more seems to be true.

Conjecture 1 ([38, Conj. IV]). Let A be a nilpotent o-algebra (associative or Lie,
say). Let the underlying o-module of A be free of rank d. Then for all v ∈ Vk,

ζ
6
Av
(s) ·

(
1−q−s

v
)
· · ·
(
1−qd−1−s

v
)∣∣∣∣

s=0
= 1.

Conjecture 1 was first observed by the author in a “topological form” which
asserts that ζ

6
A,top(s) has a simple pole at zero with residue (−1)d−1/(d−1)!.

(For an example, consider the formula in Theorem 5.) Numerous examples
illustrate that Conjecture 1 and its topological form may or may not be satisfied
for non-nilpotent examples. The author’s “semi-simplification conjecture” [42,
Conj. E] disposes of nilpotency assumptions and predicts the exact behaviour of
generic local submodule zeta functions ζΩyMv(s) in terms of the Wedderburn
decomposition of the associative unital algebra generated by Ω . (The special
case Ω = {ω} of the semi-simplification conjecture follows from [42, Thm 5.1].)
It remains an interesting problem to even state a generalisation of Conjecture 1
for possibly non-nilpotent algebras.
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8.2 Topological zeta functions at infinity

In contrast to the behaviour at zero in §8.1, the author is not aware of a useful
local analogue of the following.

Conjecture 2 (“Degree conjecture”; [38, Conj. I]). Let A be an o-algebra whose
underlying o-module is free of rank d. Then ζ

6
A,top(s) has degree−d as a rational

function in s.

For example, the topological zeta function in Theorem 5 has degree −5,
as predicted by Conjecture 2. As explained in [38, §8.1], the degree of a
topological zeta function carries valuable information about the associated
local zeta functions. We note that [55, Thm A] implies that for almost all
v ∈ Vk, the degree of ζ

6
Av
(s) as a rational function in q−s

v is −d (cf. [58, §1.3]).
A refinement of Conjecture 2 asserts that sdζ

6
A,top(s)

∣∣
s=∞

is a positive rational
number. Finding an interpretation (even conjectural) of this number remains
an interesting open problem.

In contrast to the mysterious case of subobject zeta functions, the author
found topological representation zeta functions associated with unipotent
groups to always have degree 0; see [40, Cor. 4.7].
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