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Topics of this tutorial

A global perspective on class- and orbit-counting zeta functions.

Groups from graphs: graphical groups.

Ask zeta functions ' orbit-counting zeta functions of unipotent groups.

Orbit-counting zeta functions of unipotent groups already arise from commutative
groups.

Class-counting zeta functions of unipotent groups already arise from groups of
class 2.

We’ll use the first two topics in the third lecture.

We’ll cover however much of the greyed out topics time permits.



Globalisation: group functors and group schemes
A group functor is a functor G from (commutative) rings to groups.

This just means that G assigns a group G(R) to each ring R and a group
homomorphism G(R)

G(φ)−−−→ G(R ′) to each each ring homomorphism R
φ−→ R ′ such

that identities and composition of homomorphisms are preserved.

Informally, a group scheme is a group functor of geometric origin, defined by the
vanishing of polynomial equations, with group operations defined by polynomials.

Example
GLd (invertible d× d matrices), SLd (determinant = 1), Ud (unitriangular matrices).

A unipotent group scheme G yields groups G(R) 6 Ud(R) (for fixed d) and is

defined by the vanishing of polynomial equations. Example: G =

[
1 ∗ ∗ ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 1

]
6 U4 .

We can also consider group schemes over a base ring A: instead of arbitrary rings,
we consider (commutative, associative, unital) A-algebras R only.
We’ll also assume a finiteness condition: |G(R)| <∞ whenever |R| <∞.



Orbit and class-counting zeta functions v2.0
We obtain better-behaved zeta functions by changing our setting to group schemes.

Definition
Let G 6 GLd⊗R be a group scheme over a ring R.
(Here, GLd ⊗R is the group scheme over R obtained from GLd by base change.)

The orbit-counting zeta function of G over R is

ζoc
G (s) =

∑
I

|(R/I)d/G(R/I)| · |R/I|−s.

The class-counting zeta function of G over R is

ζcc
G (s) =

∑
I

k(G(R/I)) · |R/I|−s.

In each case, the sum is over the ideals I of R with |R/I| <∞.

For our purposes, these definitions generalise our previous ones (sketch on next slide!).



Orbit and class-counting zeta functions v2.0

Sketch:

Let g ⊂ nd(Zp) be an isolated subalgebra. Suppose that p > d. We obtain a group
scheme G 6 Ud⊗Zp over Zp via G(R) = exp(g⊗Zp R).
We then have G(Zp) = exp(g) =: G and G(Z/pnZ) is the reduction Gn of G
modulo pn (within GLd(Zp)) from before.
We thus find that

ζoc
G (s) = Zoc

G (p−s)

and
ζcc

G (s) = Zcc
G (p

−s).



Orbit and class-counting zeta functions v2.0

The schematic perspective gives rise to well-behaved zeta functions.

For example, the Chinese remainder theorem yields the following Euler products.

Lemma
For a group scheme G 6 GLd, we have

ζoc
G (s) =

∏
p prime

ζoc
G⊗Zp

(s)

and
ζcc

G (s) =
∏
p prime

ζcc
G⊗Zp

(s).

Where can we find interesting but manageable examples of unipotent group schemes?



Baer groups
Let p be an odd prime. Let A and B be Zp-modules and let # : A×A→ B be an
alternating bilinear map (i.e. a#a = 0 for all a ∈ A).
Let A α−→ Hom(A,B) be the corresponding module representation:

a ′α = (·)#a ′ = a 7→ a#a ′.

We obtain a group G# with underlying set A× B and multiplication

(a, b)(a ′, b ′) =

(
a+ a ′, b+ b ′ +

1

2
a#a ′

)
.

Exercise
Show that this really defines a group. Moreover, show that

[(a, b), (a ′, b ′)] = (0, a#a ′)

for a, a ′ ∈ A and b, b ′ ∈ B.



Class numbers of Baer groups

Lemma
Suppose that |A|, |B| <∞. Then k(G#) = |B| · ask(α).

Proof.
We have

CG#(a
′, b ′) =

{
(a, b) : a#a ′ = 0

}
= Ker(a ′α)× B.

and thus
k(G#) =

1

|A||B|
∑

(a ′,b ′)

|Ker(a ′α)| · |B| = |B| · ask(α). �



Baer group schemes
Let # : Zm × Zm → Zn be an alternating bilinear product with associated module
representation Zm α−→ Mm×n(Z).

Inspired by the preceding construction, we can construct a group scheme G#, the
Baer group scheme associated with # such that for each ring R, we may identify
G#(R) = Rm × Rn as sets with commutators satisfying

[(a, b), (a ′, b ′)] = (0, a#a ′)

for a, a ′ ∈ A and b, b ′ ∈ B.

(If you’re happy to assume that 2 ∈ R×, you can just use the preceding
construction of Baer groups: G#(R) = G#R . Otherwise, this needs some work.)

Baer group schemes have class at most 2 (and class precisely 2 unless α = 0).

For finite R, we then obtain k(G#(R)) = |R|nask(αR) (see the previous lemma).

Hence, Zcc
G#⊗Zp

(T) = Zask
αZp (p

nT) for each (!) prime p.



Graphical groups

Graphical group (schemes) are particularly friendly examples of Baer groups and Baer
group schemes. In particular, we can describe them by means of alternating bilinear
products. Here is an equivalent group-theoretic description:

Definition
Let Γ be a (finite, simple) graph with vertices v1, . . . , vn. For a ring R, the graphical
group GΓ (R) is defined as follows:

Generators: x1(r), . . . , xn(r) and zij(r) for r ∈ R and i < j with vi ∼ vj.
Relations:

xi(r)xi(r
′) = xi(r+ r

′) and zij(r)zij(r ′) = zij(r+ r
′).

For i < j,

[xi(r), xj(r
′)] =

{
zij(rr

′), if vi ∼ vj,
1, otherwise.

Each zij(r) is central.



Graphical groups

Example
We have G•−• ≈ U3.
Specifically, let

X(r) =

1 r 0

0 1 0

0 0 1

 , Y(r) =
1 0 0

0 1 r

0 0 1

 , Z(r) =
1 0 r

0 1 0

0 0 1

 .
We find that [X(r), Y(s)] = Z(rs) and

U3(R) =
〈
X(r), Y(r), Z(r) (r ∈ R)

∣∣∣X(r)X(r ′) = X(r+ r ′), etc.,
[X(r), Y(s)] = Z(rs), all Z(r) central

〉
.



Groups from arbitrary module representations
We saw: orbit-counting zeta functions of unipotent groups are ask zeta functions:

Proposition
Let p� 0, g ⊂ nd(Zp), and G = exp(g) 6 Ud(Zp). Then Zoc

G (s) = Zask
g (T).

We’ll now show that conversely, up to a harmless shift, every ask zeta function counts
linear orbits. Setup:

Let M θ−→ Md×e(Zp) be a module representation.
For a d× e matrix a, let â be the invertible (d+ e)× (d+ e) matrix

â =

[
1d a

0 1e

]
.

Since θ and the induced map M/Ker(θ)→ Md×e(Zp) have the same ask zeta
function, we might as well assume that M ⊂ Md×e(Zp).



Groups from arbitrary module representations
Proposition
Zoc
M̂
(T) = Zask

M (peT).

Proof.
We show this for each coefficient. Suppose that M ⊂ Md×e(Z/pnZ).
Clearly, (x, y) ∈ Fix(â) if and only if (x, y) = (x, xa+ y) if and only if
x ∈ Ker(a). Hence,

Fix(â) = Ker(a)⊕ (Z/pnZ)e.

By the orbit-counting lemma,

|(Z/pnZ)d+e/M̂| = 1

|M|
∑
a∈M
|Ker(a)| · pne = pneask(M). �



Groups from arbitrary module representations

Our construction works uniformly for almost all primes p as follows:

Let M0
θ−→ Md×e(Z) be a module representation.

Let M be the isolator of Mθ
0 within Md×e(Z). (That is, M/M0 is the torsion

submodule of Md×e(Z)/M0.)
For a ring R, let RM ⊂ Md×e(R) be generated by the image of M.
Then Zask

θZp (T) = Zask
ZpM

(T) for p� 0.
The rule R R̂M defines a group scheme GM 6 Ud+e.
For p� 0, we have Zoc

GM⊗Zp
(T) = Zask

θZp (p
eT). Hence, up to finitely many Euler

factors, we have ζoc
GM

(s) ∼ ζask
θ (s− e).



Commutative (linear) orbit counts suffice

Proposition
Let G 6 Ud be a unipotent group scheme. Then there exists a a commutative unipotent
group scheme H 6 U2d such that for p� 0, we have

Zoc
G⊗Zp

(T) = Zoc
H⊗Zp

(p−dT).

Sketch of proof.
Let g ⊂ nd(Q) be the Lie algebra of the Q-defined algebraic group associated with
G. Let g = g ∩ nd(Z).
For p� 0, we have Zoc

G⊗Zp
(T) = Zask

Zpg
(T).

Let H = Gg 6 U2d. Then Zoc
H⊗Zp

(T) = Zask
Zpg

(pdT) for p� 0. �



Class-counting zeta functions: reduction to class 2
Proposition (R. & Voll 2024)
Let G be a unipotent group scheme of dimension d over Q. Then there exists a Baer
group scheme H dimension 2d over Q such that for p� 0, we have

Zcc
G⊗Zp

(T) = Zcc
H⊗Zp

(p−dT).

In particular, pd k(G(Fp)) = k(H(Fp)) for p� 0.

Proof.
Let g be a Z-form of the (rational) Lie algebra of G. Let α be the adjoint
representation of g. The corresponding bilinear product is the Lie bracket [·, ·] of g.
We know that Zcc

G⊗Zp
(T) = Zask

αZp (T) for p� 0.
Let H = G[·,·]. Then Zcc

H⊗Zp
(T) = Zask

αZp (p
dT). �
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