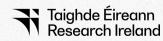
Enumerating orbits of groups Lecture 3: A web of themes and open problems

Tobias Rossmann

ICTS, Bengaluru — December 2024

Ollscoil na Gaillimhe University of Galway



Theme: tame vs wild

Given an instance of a global (say Z-defined) counting problem with local zeta functions $Z_p(T)$ (p prime), we regard our instance as *tame* if there exists a rational function W(X,T) such that $Z_p(T) = W(p,T)$ for $p \gg 0$.

This is often referred to as *(almost) uniformity*. In the study of p-adic integrals, model theorists use the term "uniformity" to mean something else, which can be confusing.

Example

The local class-counting zeta functions of the Heisenberg group are given by the uniform formula

$$\mathsf{Z}^{\mathsf{cc}}_{\mathrm{U}_3 \otimes \mathbf{Z}_{\mathrm{p}}}(\mathsf{T}) = \frac{1 - \mathsf{T}}{(1 - \mathsf{p}\mathsf{T})(1 - \mathsf{p}^2\mathsf{T})}$$

Hence, counting conjugacy classes of $U_3(\mathbf{Z}/p^n\mathbf{Z})$ is tame.

Theme: tame vs wild

- Informally, we regard a counting problem as (geometrically) wild if, by varying over all or some instances, the behaviour of $Z_p(T)$ as p varies captures the numbers of F_p -rational points on arbitrary (Z-defined) schemes.
- Many counting problems of interest are *at most* geometrically wild. More precisely, they often admit (*geometric*) Denef formulae, valid for $p \gg 0$, of the form

$$Z_p(T) = \sum_{i=1}^r \# V_i(\mathbf{F}_p) \cdot W_i(p,T)$$

for schemes V_i and rational functions $W_i(X,T)$.

- Known tame counting problems are often *combinatorial*, while wild ones are *(algebro-)geometric*.
- When instances of counting problems are tame, we can seek to find combinatorial (or other) reasons for that by e.g. showing that $\#V_i(\mathbf{F}_p) \in \mathbf{Q}[p]$ for $p \gg 0$.
- Proving or exhibiting instances of wild behaviour is a very different kind of problem. Far fewer tools have been developed for this purpose.

Average sizes of kernels and enumerating matrices by rank

- Let $A(X) \in M_{d \times e}(\mathbf{Z}[X_1, \dots, X_{\ell}])$ be a matrix of linear forms, corresponding to a module representation $\theta \colon \mathbf{Z}^{\ell} \to M_{d \times e}(\mathbf{Z}), \quad x \mapsto A(x).$
- Let V_i be the "rank-i locus" of A(X).

This is the part of affine ℓ -space where all $(i + 1) \times (i + 1)$ minors of A(X) vanish, but some $i \times i$ minor is invertible.

- We then have $ask(\theta^{\mathbf{F}_q}) = \sum_{i=0}^{\infty} \#V_i(\mathbf{F}_q)q^{d-i-\ell}$.
- Hence, for fixed θ , the study of $ask(\theta^{F_q})$ as q varies is at most as hard as counting F_q -rational points on schemes.
- Polynomiality questions surrounding rank counts in combinatorially-defined spaces of matrices have been of considerable interest for a *long* time.

Some papers: Landsberg 1893, Carlitz 1954, MacWilliams 1969, Buckhiester 1972, Bender 1974, Lewis et al. 2011, Klein et al. 2014

Wild problems

- Recall that we regard a counting problem depending on a prime p or prime power q as *geometrically wild* if it is at least as hard as counting \mathbf{F}_{p} or \mathbf{F}_{q} -points on arbitrary schemes.
- Belkale and Brosnan (2003) showed the following:

Counting invertible symmetric $n \times n$ matrices over \mathbf{F}_q with entries in specified positions forced to be zero is a wild problem.

(More precise version below!)

- I'm not aware of results of this type which prove wildness for zeta functions of algebraic structures.
- However, if we're willing to settle for a weaker "approximate form" of wildness, then the following result takes care of ask, class-counting, and orbit-counting zeta functions.

Approximate wildness

Theorem (R. 2024)

Let X be a scheme of finite type over Z. Let $n \ge 1$. Then there are

- $\bullet \mbox{ commutative group schemes } M_1, \ldots, M_r \mbox{ with } M_i \leqslant U_{d_i},$
- Baer group schemes G_1, \ldots, G_r , and
- univariate Laurent polynomials $f_1, \ldots, f_r, g_1, \ldots, g_r$ over **Z** such that for each prime power **q** the numbers

$$F(q) := \sum_{i=1}^{r} f_i(q) \operatorname{k}(G_i(\mathbf{F}_q)) \text{ and } G(q) := \sum_{i=1}^{r} g_i(q) \#(\mathbf{F}_q^{d_i} / M_i(\mathbf{F}_q))$$

are integers which satisfy

$$\# X(\mathbf{F}_q) \equiv F(q) \equiv G(q) \pmod{q^n}.$$

Given X, there exists n with $\#X(\mathbf{F}_q) < q^n$ for all q. Hence: class numbers and numbers of orbits of unipotent groups are "at least as complicated" as numbers of \mathbf{F}_q -rational points on arbitrary schemes. We already saw that they're at most this complicated.

Kontsevich's conjecture

Let $\Gamma = (V, E)$ be a graph.

Definition

The Kirchhoff polynomial of Γ is

$$\mathsf{P}_{\Gamma}(\mathsf{X}) = \sum_{\mathsf{T}} \prod_{e \not\in \mathsf{T}} \mathsf{X}_e,$$

where the sum ranges over spanning trees of Γ .

Conjecture (Kontsevich)

For each Γ , the number of solutions of $P_{\Gamma}(X) = 0$ (in \mathbf{A}^E) over \mathbf{F}_q is given by a polynomial in q.

Kontsevich's conjecture

Theorem (Belkale and Brosnan 2003)

Kontsevich's conjecture is maximally false: counting \mathbf{F}_q -points of $P_{\Gamma}(X) = 0$ as Γ ranges over graphs is as hard as counting \mathbf{F}_q -points on arbitrary schemes over \mathbf{Z} .

- Let Γ be a graph with distinct vertices v_1, \ldots, v_n .
- Let $M_{\Gamma}^+ = [x_{ij}]$ be the generic symmetric $n \times n$ matrices with $x_{ij} = 0$ for $v_i \sim v_j$.
- Let Z_{Γ} be the regular locus of M_{Γ}^+ .
- As part of numerous clever translations and (equally clever!) reductions, Belkale and Brosnan showed that the counting functions

 $\mathbf{q} \mapsto \# \mathbf{Z}_{\Gamma}(\mathbf{F}_{\mathbf{q}})$

generate (a certain localisation of) the algebra of all point-counting functions derived from schemes over ${\bf Z}.$

Wild Baers

We can use this result to construct Baer group schemes with "approximately wild" numbers of conjugacy classes as in our theorem.

• Given Γ, consider

$$A_{\Gamma} = \begin{bmatrix} 0 & M_{\Gamma}^+ \\ -(M_{\Gamma}^+)^{\top} & 0 \end{bmatrix}.$$

- This is an antisymmetric matrix of linear forms (over Z) which gives rise to an alternating bilinear map *.
- The Baer group schemes with "wild mod qⁿ" numbers of conjugacy classes are iterated central powers of the G_{*}—the number of factors depends on n.

Class-counting zeta functions of graphical groups: tame or wild?

How do class-counting zeta functions of graphical group schemes G_{Γ} look like?

- These zeta functions can be expressed in terms of the rank loci of generic antisymmetric matrices with support constraints.
- Inspired by the work of Belkale and Brosnan, this motivated R. & Voll to suspect that graphical group schemes have wild class-counting zeta functions.
- After all... how likely is it that wild pieces add up to something tame (polynomial)?

\sum wild = tame, sometimes

Example (Carnevale & R. 2022)

Let

$$\begin{split} \mathcal{M} &= \big\{ [x_{ij}] \in \mathrm{M}_3(\mathbf{Z}) : x_{11} + x_{33} = x_{12} + x_{21} = x_{13} + x_{22} + x_{32} \\ &= x_{23} + x_{31} = 0 \big\}. \end{split}$$

- \bullet We can consider the group scheme $G_M \leqslant \operatorname{GL}_6$ (see the tutorial).
- There are $q^3 q$ orbits of size q^3 , $q^2 q$ orbits of size q^2 , and q^3 fixed points of $G_M(F_q)$ acting on F_q^6 .
- \bullet The number of elements of $G_M(F_q)$ with precisely q^5 fixed points on F_q^6 is not quasi-polynomial.

This number is (q-1)(N(q)+1), where N(q) is the number of roots of $X^5 + X - 1$ in \mathbf{F}_q .

• By taking Knuth duals, the roles of orbit and fixed point set sizes can be interchanged.

The Uniformity Theorem

It turns out that class-counting zeta functions of graphical groups are tame:

Theorem (R. & Voll 2024)

Let Γ be a graph with m edges. There exists $W_{\Gamma}(X,T)\in \mathbf{Q}(X,T)$ such that for each prime p,

$$\mathsf{Z}^{\mathsf{cc}}_{\mathbf{G}_{\Gamma}\otimes\mathbf{Z}_{\mathfrak{p}}}(\mathsf{T})=W_{\Gamma}(\mathfrak{p},\mathfrak{p}^{\mathfrak{m}}\mathsf{T}).$$

(We could of course absorb the factor p^m and just consider $W_{\Gamma}(X, X^mT)$ instead. We would then have to adjust some of the formulae and identities below.)

Remark

- Our proof is constructive and implemented in Zeta. It is based on a (quite elaborate) recursion which uses *toric geometry* to analyse p-adic integrals attached to ask zeta functions.
- A list of these rational functions for graphs on at most 7 vertices is available online.
- Some infinite families have received special attention.

- In the study of ask zeta functions, one cannot help but notice examples of different module representations giving rise to the same zeta functions.
- Earlier example: $\mathfrak{gl}_d(\mathbf{Z}_p)$ and $\mathfrak{sl}_d(\mathbf{Z}_p)$ have the same ask zeta functions for d > 1.
- (Carnevale & R. 2022): More generally, certain *admissible* linear relations have no effect on ask zeta functions. The following is a fun application of this theme.
- Let $F_{c,d}$ be the group scheme associated with the free nilpotent Lie algebra of class c and rank d. Example: $F_{2,2} = U_3$

 $F_{c,d}$ can be defined by exponentiating the corresponding relatively free Lie algebra over Z[1/c!]. For p > c, the group $F_{c,d}(Z_p)$ is the free nilpotent pro-p group of class c on d generators.

Theorem (Lins 2020) $Z_{F_{2,d}\otimes \mathbf{Z}_{p}}^{cc}(T) = \frac{1 - p^{\binom{d-1}{2}}T}{(1 - p^{\binom{d}{2}}T)(1 - p^{\binom{d}{2}+1}T)}.$

Two further proofs are known at this point.

The proof of the following theorem fits the theme of rigidity.

Theorem (Carnevale & R. 2022) Let $p \ge 5$. Then: $Z_{F_{3,d}\otimes \mathbf{Z}_{p}}^{cc}(T) = \frac{\left(1 - p^{\frac{(d-1)(d^{2}+d-3)}{3}}T\right)\left(1 - p^{\frac{(d-2)d(d+2)}{3}}T\right)}{\left(1 - p^{\frac{(d-1)d(d+1)}{3}}T\right)\left(1 - p^{\frac{d^{3}-d+3}{3}}T\right)\left(1 - p^{\frac{(2d^{2}+3d-11)d}{6}}T\right)}.$

Sketch of proof.

- Let $\mathfrak{a}_{c,d}$ be the free algebra generated by d symbols subject to the relations $x^2 = 0$ and $x_1(x_2(\cdots(x_cx_{c+1})\cdots)) = 0$.
- Let $f_{c,d} = \mathfrak{a}_{c,d}/(\text{Jacobi identity})$, the free class-c nilpotent Lie algebra of rank d.
- Let $\alpha_{c,d}$ (resp. $\hat{\alpha}_{c,d}$) be the •-dual of the adjoint representation of $\mathfrak{a}_{c,d}$ (resp. $\mathfrak{f}_{c,d}$).
- General ask machinery: $Z^{cc}_{F_{c,d}\otimes \mathbf{Z}_p}(T) = Z^{ask}_{\hat{\alpha}^{\mathbf{Z}_p}}(T)$.
- The ask zeta function of a module representation arising from a matrix of linear forms A(X) is determined by the sequence of *Fitting ideals* of Coker(A(X)).
 These are the ideals of minors of A(X), ordered in a certain way.
- Induction and a Gröbner basis calculation (using Macaulay2 or SageMath) show that for c=3, our two module representations $\alpha_{3,d}$ and $\hat{\alpha}_{3,d}$ give rise to the same Fitting ideals. Hence, $Z^{cc}_{F_{3,d}\otimes {\bf Z}_p}(T)=Z^{ask}_{\alpha^{{\bf Z}_p}}(T).$
- The latter zeta functions turns out to (essentially) coincide with the class-counting zeta function of graphical group schemes attached to so-called threshold graphs.
 We can then read off our formula from known work (R. & Voll 2024). :)

- It seems that we are only beginning to understand rigidity phenomena. Here is another example. Let Γ = (V, E) be a simple graph with vertices v₁,..., v_n.
- Let $M_{\Gamma} = \{[x_{ij}] \in M_n(\mathbf{Z}) : x_{ij} = 0 \text{ if } \nu_i \sim \nu_j\}.$
- Let M^+_{Γ} (M^-_{Γ}) consist of the symmetric (resp. antisymmetric) matrices in M_{Γ} .

Theorem (R. & Voll 2025+)

 $Z^{ask}_{\mathbf{Z}_pM_{\Gamma}}(T) = Z^{ask}_{\mathbf{Z}_pM_{\Gamma}^-}(T) = Z^{ask}_{\mathbf{Z}_pM_{\Gamma}^+}(T) \text{ (where the second equality needs } p > 2.)$

Example

Taking $\Gamma = \bullet \bullet \bullet$, the theorem e.g. explains why $\left\{ \begin{bmatrix} a & 0 & b \\ 0 & c & 0 \\ d & 0 & e \end{bmatrix} : a, b, c, d, e \in \mathbf{Z}_p \right\}$ and its submodule $\left\{ \begin{bmatrix} a & 0 & b \\ 0 & c & 0 \\ -b & 0 & e \end{bmatrix} : a, b, c, e \in \mathbf{Z}_p \right\}$ have the same ask zeta function. The common ask zeta function is $\frac{1+T-2q^{-1}T-2q^{-2}T+q^{-3}T+q^{-3}T^2}{(1-T)^3}$, in case you were wondering.

Theme: modelling theorems

- A hypergraph is a triple H = (V, E, 1) consisting of finite sets V and E and an incidence relation 1 ⊂ V × E. The elements of V and E are the vertices and hyperedges of H, respectively.
- Let V = {v₁,..., v_n} and E = {e₁,..., e_m}. Let M_H be the module of n × m matrices [x_{ij}] over Z with x_{ij} = 0 unless v_i ι e_j.
- The support of a hyperedge e is $||e|| = \{v \in V : v \iota e\}$.
- Let $\widehat{WO}(V)$ be the poset of (possibly empty) flags of (possibly empty) subsets of V.
- Let $\mu_I = \mu_I(\mathsf{H})$ be the number of hyperedges e with $\|e\| = I.$ Define

$$\mathrm{I}_{H}(X,T) = \sum_{y \in \widehat{\mathrm{WO}}(V)} (1-X^{-1})^{|\mathrm{sup}(y)|} \prod_{J \in y} \frac{X^{|J| - \sum \atop{I:I \cap J \neq \emptyset} \mu_{I}} T}{1-X^{|J| - \sum \atop{I:I \cap J \neq \emptyset} \mu_{I}} T}.$$

Theorem (R. Voll 2024)

 $Z^{\text{ask}}_{\mathbf{Z}_p M_H}(T) = I_H(p,T) \text{ for each prime } p.$

Theme: modelling theorems

Definition

Cographs are recursively defined as follows:

- A graph consisting of a single vertex is a cograph.
- If Γ and Γ' are cographs, then so are their disjoint union $\Gamma \oplus \Gamma'$ and their join $\Gamma \vee \Gamma'$. The join $\Gamma_1 \vee \Gamma_2$ is obtained from $\Gamma_1 \oplus \Gamma_2$ by connecting each vertex of Γ_1 to each vertex of Γ_2 .

Theorem ("Cograph modelling theorem"; R. & Voll 2024)

Let Γ be a cograph. Then there exists an explicit modelling hypergraph $H = H(\Gamma)$ with $W_{\Gamma}(X,T) = I_{H}(X,T)$.

The point is that we have an explicit *combinatorial Denef formula* for $I_H(X,T)$ which then allows us to deduce properties of $W_{\Gamma}(X,T)$ and hence of class-counting zeta functions of cographical groups. Consequences include:

- If Γ is a cograph, then the abscissa of convergence of $\zeta^{cc}_{G_{\Gamma}}(s)$ is an integer.
- If Γ is a cograph, then each real pole of $\zeta_{G_{\Gamma}\otimes Z_{n}}^{cc}(s)$ is an integer.

Theme: operations

- An attractive feature of ask zeta functions, and hence of class- and orbit-counting zeta functions of unipotent groups, is that they are often well behaved w.r.t. algebraic operations.
- Knuth duality (and its harmless effects on ask zeta functions) are one example.
- Given module representation $M \xrightarrow{\theta} Hom(V, W)$ and $M' \xrightarrow{\theta'} Hom(V', W')$, we obtain

 $\mathsf{M} \oplus \mathsf{M}' \xrightarrow{\theta \oplus \theta'} \operatorname{Hom}(\mathsf{V} \oplus \mathsf{V}', \mathsf{W} \oplus \mathsf{W}').$

• Recall that the Hadamard product of $F(T) = \sum_{n=0}^{\infty} a_n T^n$ and $G(T) = \sum_{n=0}^{\infty} b_n T^n$ is

$$F(T) *_T G(T) = \sum_{n=0}^{\infty} a_n b_n T^n.$$

• It is well known that Hadamard products of rational generating functions are themselves rational.

Hadamard products

Lemma

Let θ and θ' be finite free module representations over \mathbf{Z}_p . Then $Z^{ask}_{\theta \oplus \theta'}(T) = Z^{ask}_{\theta}(T) *_T Z^{ask}_{\theta'}(T).$

Lemma

Let **G** and **G**' be group schemes over \mathbf{Z}_p . Then $\mathsf{Z}_{\mathbf{G}\times\mathbf{G}'}^{\mathsf{cc}}(\mathsf{T}) = \mathsf{Z}_{\mathbf{G}}^{\mathsf{cc}}(\mathsf{T}) *_{\mathsf{T}} \mathsf{Z}_{\mathbf{G}'}^{\mathsf{cc}}(\mathsf{T})$.

Proof.

We have $k(G \times G') = k(G) k(G')$ for finite groups G and G'.

- Already for examples of the form $M_{d \times e}(\mathbf{Z}_p)$, the study of Hadamard products of ask zeta functions very naturally touches upon and involves *permutation statistics*.
- We saw some glimpses of that in the tutorial.
- More about this: see Angela's third lecture. :)

Joins of graphs

Theorem (R. & Voll 2025+)

Let Γ_1 and Γ_2 be graphs on n_1 and n_2 vertices, respectively. Then

$$\begin{split} W_{\Gamma_1 \vee \Gamma_2}(X,T) &= (X^{1-n_1-n_2}T - 1 \\ &+ W_{\Gamma_1}(X,X^{-n_2}T)(1-X^{-n_2}T)(1-X^{1-n_2}T) \\ &+ W_{\Gamma_2}(X,X^{-n_1}T)(1-X^{-n_1}T)(1-X^{1-n_1}T)) \\ &/((1-T)(1-XT)). \end{split}$$

Remark

In the special case that Γ_1 and Γ_2 are *cographs*, this was first proved by R. & Voll (2024). (This used the Cograph Modelling Theorem.)

It remains open to conceptually understand the above product of generating functions.

Open problem: Hadamard products

• At this point, we have a combinatorial understanding of Hadamard products

$$\mathsf{Z}^{\mathsf{ask}}_{\mathrm{M}_{d_1}\times e_1}(\mathbf{Z}_p) \ast_\mathsf{T} \cdots \ast_\mathsf{T} \mathsf{Z}^{\mathsf{ask}}_{\mathrm{M}_{d_r}\times e_r}(\mathbf{Z}_p)$$

when $d_1 - e_1 = \cdots = d_r - e_r$ in terms of shuffles of coloured permutations (Carnevale, Moustakas, R. 2024+).

• This is e.g. sufficient to explicitly determine the class-counting zeta functions of $F_{2,d_1} \times \cdots \times F_{2,d_r}$.

Problem

Given arbitrary (d_i, e_i) , provide a useful combinatorial interpretion of the above rational generating function.

Open problem: free nilpotent groups

Question

Let $c \ge 4$.

- Does there exist $W_{c,d}(X,T) \in \mathbf{Q}(X,T)$ with $Z_{F_{c,d} \otimes \mathbf{Z}_p}^{cc}(T) = W_{c,d}(p,T)$ for $p \gg 0$?
- If so, how does $W_{c,d}(X,T)$ look like?
- We saw that the answer is Y_{ES} for c = 2 and c = 3 (and any d).
- O'Brien & Voll (2015) explicitly determined the number of conjugacy classes of given size of $F_{c,d}(\mathbf{F}_q)$ in terms of Witt's dimension formula. This takes care of the coefficient of T in $Z_{F_{c,d}\otimes \mathbf{Z}_p}^{cc}(T)$.
- Contrary to what happens for c=2,3, we shouldn't expect formulae of the form $\prod(1-p^{a_i}T^{b_i})^{\pm 1}.$ Indeed:

$$Z^{cc}_{F_{4,2}\otimes \mathbf{Z}_p}(T) = \frac{p^7T^3 - p^6T^2 - p^5T^2 + p^4T^2 + p^3T - p^2T - pT + 1}{(1 - p^7T^2)(1 - p^4T)^2}.$$

Open problem: class-counting zeta functions of graphical groups

Given n, using the Cograph Modelling Theorem and the Uniformity Theorem for hypergraphs, we can produce an explicit combinatorial Denef formula (specifically: a sum over flags of subsets of $\{1, \ldots, n\}$) for the rational functions $W_{\Gamma}(X, T)$ attached to cographs on n vertices.

Question (R. & Voll 2024)

Let Γ be a simple graph.

-) Is the abscissa of convergence of $\zeta^{cc}_{G_{\Gamma}}(s)$ always an integer?
- 2) Are the real parts of the poles of $\zeta_{G_{\Gamma}\otimes Z_{D}}^{cc}(s)$ always half-integers?
- 3 Is there a meaningful "combinatorial Denef formula" for the $W_{\Gamma}(X, T)$ which is valid for *all* graphs on a given vertex set?

The End.

Compiled on 2024-12-06 at 08:55:56 UTC.