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Theme: tame vs wild

Given an instance of a global (say Z-defined) counting problem with local zeta functions
Z,(T) (p prime), we regard our instance as tame if there exists a rational function
W(X,T) such that Z,(T) = W(p, T) for p > 0.

This is often referred to as (almost) uniformity. In the study of p-adic integrals, model theorists use the

term “uniformity” to mean something else, which can be confusing.

Example
The local class-counting zeta functions of the Heisenberg group are given by the uniform

formula
1—T

Goem (D = T —pmyi —po1)

Hence, counting conjugacy classes of U3(Z/p™Z) is tame.



Theme: tame vs wild

o Informally, we regard a counting problem as (geometrically) wild if, by varying over
all or some instances, the behaviour of Z,(T) as p varies captures the numbers of
Fp-rational points on arbitrary (Z-defined) schemes.

@ Many counting problems of interest are at most geometrically wild. More precisely,
they often admit (geometric) Denef formulae, valid for p > 0, of the form

Z,(T) =) #Vi(Fp) - Wilp, T)
i=l1

for schemes V; and rational functions Wi (X, T).

@ Known tame counting problems are often combinatorial, while wild ones are
(algebro-)geometric.

@ When instances of counting problems are tame, we can seek to find combinatorial
(or other) reasons for that by e.g. showing that #Vi(F,) € Q[p] for p > 0.

@ Proving or exhibiting instances of wild behaviour is a very different kind of problem.
Far fewer tools have been developed for this purpose.



Average sizes of kernels and enumerating matrices by rank

Let A(X) € Mgxe(Z[Xq,...,X¢]) be a matrix of linear forms, corresponding to a
module representation 0: Z' — Mgye(Z), x+— A(x).

Let V; be the “rank-i locus” of A(X).

This is the part of affine {-space where all (i+ 1) x (i+ 1) minors of A(X) vanish, but some i x i

minor is invertible.

oo
We then have ask(0F4) = Z #Vi(Fq)qd*i*e.

i=0
Hence, for fixed 0, the study of ask(0¥4) as q varies is at most as hard as counting
F4-rational points on schemes.

Polynomiality questions surrounding rank counts in combinatorially-defined spaces
of matrices have been of considerable interest for a long time.

Some papers: Landsberg 1893, Carlitz 1954, MacWilliams 1969, Buckhiester 1972, Bender 1974,
Lewis et al. 2011, Klein et al. 2014



Wild problems

@ Recall that we regard a counting problem depending on a prime p or prime power g
as geometrically wild if it is at least as hard as counting F,,- or F4-points on
arbitrary schemes.

o Belkale and Brosnan (2003) showed the following:

Counting invertible symmetric n x n matrices over Fq with entries in specified
positions forced to be zero is a wild problem.

(More precise version below!)

@ I'm not aware of results of this type which prove wildness for zeta functions of
algebraic structures.

@ However, if we're willing to settle for a weaker “approximate form” of wildness,
then the following result takes care of ask, class-counting, and orbit-counting zeta
functions.



Approximate wildness
Theorem (R. 2024)

Let X be a scheme of finite type over Z. Let n > 1. Then there are

@ commutative group schemes My, ..., M, with M; < Ug,,
@ Baer group schemes Gg,...,G;, and
@ univariate Laurent polynomials f1,...,f:,91,...,9y over Z

such that for each prime power q, the numbers
F(q) =) fi(q)k(Gi(Fq)) and G(q) :== ) _gi(q) #(F3/M;(Fq))
i=1 i=1

are integers which satisfy

| #X(Fq) =F(q) = G(q) (mod q").|

Given X, there exists n with #X(Fq) < q™ for all q. Hence: class numbers and numbers
of orbits of unipotent groups are “at least as complicated” as numbers of F4-rational
points on arbitrary schemes. We already saw that they're at most this complicated.



Kontsevich's conjecture

Let ' = (V,E) be a graph.
Definition

The Kirchhoff polynomial of T is

Pr(X) =) J]Xe

T egT

where the sum ranges over spanning trees of I

Conjecture (Kontsevich)

For each T, the number of solutions of Pr(X) = 0 (in AF) over F is given by a
polynomial in q.



Kontsevich's conjecture
Theorem (Belkale and Brosnan 2003)

Kontsevich's conjecture is maximally false: counting Fq-points of Pr(X) =0 as I' ranges
over graphs is as hard as counting F-points on arbitrary schemes over Z.

@ Let I' be a graph with distinct vertices vi,...,Vvn.
o Let M = [xij] be the generic symmetric n x n matrices with xij = 0 for v ~vj.

@ Let Zr be the regular locus of MlJf

@ As part of numerous clever translations and (equally clever!) reductions, Belkale
and Brosnan showed that the counting functions

q— #Zr(Fg)

generate (a certain localisation of) the algebra of all point-counting functions
derived from schemes over Z.



Wild Baers

We can use this result to construct Baer group schemes with “approximately wild”
numbers of conjugacy classes as in our theorem.

@ Given I', consider
B 0 Mt
= [—(MF)T 0 ] '

e This is an antisymmetric matrix of linear forms (over Z) which gives rise to an
alternating bilinear map .

@ The Baer group schemes with “wild mod ™" numbers of conjugacy classes are
iterated central powers of the G,—the number of factors depends on n.



Class-counting zeta functions of graphical groups: tame or wild?

How do class-counting zeta functions of graphical group schemes Gr look like?

@ These zeta functions can be expressed in terms of the rank loci of generic
antisymmetric matrices with support constraints.

@ Inspired by the work of Belkale and Brosnan, this motivated R. & Voll to suspect
that graphical group schemes have wild class-counting zeta functions.

o After all... how likely is it that wild pieces add up to something tame
(polynomial)?



> wild = tame, sometimes

Example (Carnevale & R. 2022)
o Let

M = {[xi] € M3(Z) : x11 +x33 = X12 + X21 = X13 + X22 + X32
= X23 + X371 :0}.

@ We can consider the group scheme Gy < GLg (see the tutorial).

o There are q> — q orbits of size q°, q°> — q orbits of size g%, and g> fixed points of
Gm(Fq) acting on Fg.

@ The number of elements of Gy (F) with precisely q° fixed points on Fg is not
quasi-polynomial.
This number is (q — 1)(N(q) + 1), where N(q) is the number of roots of X> +X — 1 in Fq.

@ By taking Knuth duals, the roles of orbit and fixed point set sizes can be
interchanged.



The Uniformity Theorem

It turns out that class-counting zeta functions of graphical groups are tame:

Theorem (R. & Voll 2024)

Let ' be a graph with m edges. There exists Wr (X, T) € Q(X, T) such that for each
prime p,
Groz, (T) =Wr(p,p™T).

(We could of course absorb the factor p™ and just consider Wr (X, X™T) instead. We would then have

to adjust some of the formulae and identities below.)

Remark

@ Our proof is constructive and implemented in Zeta. It is based on a (quite
elaborate) recursion which uses toric geometry to analyse p-adic integrals attached
to ask zeta functions.

@ A list of these rational functions for graphs on at most 7 vertices is available online.

@ Some infinite families have received special attention.


https://torossmann.github.io/cico/

Theme: rigidity of ask zeta functions

@ In the study of ask zeta functions, one cannot help but notice examples of different
module representations giving rise to the same zeta functions.

o Earlier example: gl;(Zy) and slq(Zy,) have the same ask zeta functions for d > 1.

o (Carnevale & R. 2022): More generally, certain admissible linear relations have no
effect on ask zeta functions. The following is a fun application of this theme.

o Let F. 4 be the group scheme associated with the free nilpotent Lie algebra of class
¢ and rank d. Example: F;;, = U3

Fc,a can be defined by exponentiating the corresponding relatively free Lie algebra over Z[1/c!].

For p > c, the group F¢ a(Zy) is the free nilpotent pro-p group of class ¢ on d generators.



Theme: rigidity of ask zeta functions
Theorem (Lins 2020)

1 _p(dgl)T
VA NNE :
et = I )

Two further proofs are known at this point.

The proof of the following theorem fits the theme of rigidity.

Theorem (Carnevale & R. 2022)
Let p > 5. Then:

(1 _p(d*1)(c132+d73)_]_) (] _p(dfmg(dm_l_)

IC:cs,d®Zp(T) = (d—1)d(d+1) FERET (2d2+3d—11)d :
(1—p 3 T)(1—pr)(1—p 3 T)



Theme: rigidity of ask zeta functions
Sketch of proof.

Let acq be the free algebra generated by d symbols subject to the relations x2 =0
and x1(x2(- - (xcXet1) -+ )) = 0.

Let fc,q = ac,q/(Jacobi identity), the free class-c nilpotent Lie algebra of rank d.
Let otcq (resp. &¢,a) be the e-dual of the adjoint representation of acq (resp. fc,a).

General ask machinery: Z,C:i)d®zp(T) = Z;sz"; (T).

The ask zeta function of a module represecr"&ation arising from a matrix of linear
forms A(X) is determined by the sequence of Fitting ideals of Coker(A(X)).

These are the ideals of minors of A(X), ordered in a certain way.

Induction and a Grébner basis calculation (using Macaulay2 or SageMath) show
that for ¢ = 3, our two module representations a3 4 and &3 4 give rise to the same

Fitting ideals. Hence, Z§% o7 (T) = ZZSZ'; (T).

3,d
The latter zeta functions turns out to (essentially) coincide with the class-counting
zeta function of graphical group schemes attached to so-called threshold graphs.
We can then read off our formula from known work (R. & Voll 2024). :) ¢



Theme: rigidity of ask zeta functions

@ It seems that we are only beginning to understand rigidity phenomena. Here is
another example. Let I' = (V, E) be a simple graph with vertices vi,...,v,.

o Let Mr = {Pq;] € Mn(Z) : x35 = 0 if vj ~v;}.

o Let M (M) consist of the symmetric (resp. antisymmetric) matrices in M.

Theorem (R. & Voll 2025+)

Z%ikMr(T) = Z%ikMF(T) = ZazikMF (T) (where the second equality needs p > 2.)

Example

0b
Taking I' = e—e—e, the theorem e.g. explains why {[§3 o} :a,b,c,d,e e Zp} and its
@

al0b
0 : o} :a,b,c,e € Zp} have the same ask zeta function.
@

submodule { [

14T—2q ' T—2q 2T+q 3T+q 377

(-T)3 , In Case you were wonderlng.

The common ask zeta function is



Theme: modelling theorems

@ A hypergraph is a triple H = (V, E, 1) consisting of finite sets V and E and an
incidence relation 1C V x E. The elements of V and E are the vertices and
hyperedges of H, respectively.

o Let V={vi,...,vq}and E ={ey,...,em}. Let My be the module of n x m
matrices [xi;] over Z with xi; = 0 unless v; 1 e;.

@ The support of a hyperedge e is |je|| ={ve V:v1ie}

o Let W'b(V) be the poset of (possibly empty) flags of (possibly empty) subsets of V.

@ Let puy = py(H) be the number of hyperedges e with ||e|| = . Define

|]|*I IZ]#) HIT
- P 1su )| ol
I4(X,T) = /Z\ (1 Py H = -
yeWo(v) JEUS =X IIﬂ];é@ T

Theorem (R. Voll 2024)
2554, (T) = In(p, T) for each prime p.



Theme: modelling theorems

Definition
Cographs are recursively defined as follows:
@ A graph consisting of a single vertex is a cograph.
o If " and '/ are cographs, then so are their disjoint union '@ T and their join I'\V/T".

The join 7 /' T is obtained from I’y & I by connecting each vertex of I'1 to each vertex of I5.

Theorem (“Cograph modelling theorem”; R. & Voll 2024)

Let " be a cograph. Then there exists an explicit modelling hypergraph H = H(T")
with Wr(X, T) = Ix(X, T).

The point is that we have an explicit combinatorial Denef formula for Iy(X, T) which
then allows us to deduce properties of Wr (X, T) and hence of class-counting zeta
functions of cographical groups. Consequences include:

o If I' is a cograph, then the abscissa of convergence of (¢ (s) is an integer.

o If I' is a cograph, then each real pole of CEC@ZI)(S) is an integer.



Theme: operations

@ An attractive feature of ask zeta functions, and hence of class- and orbit-counting
zeta functions of unipotent groups, is that they are often well behaved
w.r.t. algebraic operations.

e Knuth duality (and its harmless effects on ask zeta functions) are one example.

@ Given module representation M Ly Hom(V, W) and M’ i Hom(V/,W’), we

obtain

MaoM %% Hom(Ve V,WaeW).

@ Recall that the Hadamard product of F(T) = > anT™ and G(T) = }_ b,T" is

n=0

F(T) #r G(T Z a b

@ It is well known that Hadamard products of rational generating functions are
themselves rational.



Hadamard products

Lemma

Let 6 and ©’ be finite free module representations over Z,.

Then Z3K,,(T) = Z35(T) #7 ZZ*(T). ¢
Lemma

Let G and G’ be group schemes over Z,. Then Z&, ., (T) = Z&(T) 1 Z& (T).

Proof.
We have k(G x G’) = k(G) k(G’) for finite groups G and G’. ¢

o Already for examples of the form Mgy (Zp), the study of Hadamard products of
ask zeta functions very naturally touches upon and involves permutation statistics.
@ We saw some glimpses of that in the tutorial.

@ More about this: see Angela’s third lecture. :)



Joins of graphs
Theorem (R. & Voll 2025+)

Let I and T, be graphs on n and n; vertices, respectively. Then

Wrvn, (X, T) = (X772 T — 1
+ Wr, (X, XT2T) (T — XT™2T)(1 — X' 7m2T)
+Wr, (XX TMT) (1 =X™T)(1 = X'""MT))
/(1 =T)(1 = XT)).

Remark
In the special case that 'l and I are cographs, this was first proved by R. & Voll (2024).
(This used the Cograph Modelling Theorem.)

It remains open to conceptually understand the above product of generating functions.



Open problem: Hadamard products

@ At this point, we have a combinatorial understanding of Hadamard products

ask ask
W e (2o ST A oy

when d; —e; = --- = d; — e, in terms of shuffles of coloured permutations
(Carnevale, Moustakas, R. 2024+).
@ This is e.g. sufficient to explicitly determine the class-counting zeta functions of
FZ,d1 DX e FZ,dT-
Problem

Given arbitrary (di, e;), provide a useful combinatorial interpretion of the above rational
generating function.



Open problem: free nilpotent groups

Question

Let ¢ > 4.
@ Does there exist W, 4(X, T) € Q(X, T) with Z§i7d®zp(T) =Wealp, T) for p > 07
e If so, how does W, 4(X, T) look like?

@ We saw that the answer is YES for ¢ =2 and ¢ = 3 (and any d).

@ O'Brien & Voll (2015) explicitly determined the number of conjugacy classes of
given size of F¢ 4(Fg) in terms of Witt's dimension formula. This takes care of the

coefficient of T in ZE 7 (T).

o Contrary to what happens for ¢ = 2,3, we shouldn't expect formulae of the form
T1(1 — p%TP)*!. Indeed:

Jcc 1) = P’ —p®T2—p° T2+ p* T2 + T — p?T — pT + 1
et [ PR TR




Open problem: class-counting zeta functions of graphical groups

Given n, using the Cograph Modelling Theorem and the Uniformity Theorem for
hypergraphs, we can produce an explicit combinatorial Denef formula (specifically: a
sum over flags of subsets of {1,...,n}) for the rational functions Wr(X, T) attached to
cographs on n vertices.

Question (R. & Voll 2024)

Let I' be a simple graph.
@ Is the abscissa of convergence of C%fr(s) always an integer?

@ Are the real parts of the poles of Cgifr@)zp(s) always half-integers?

@ Is there a meaningful “combinatorial Denef formula” for the Wi (X, T) which is
valid for all graphs on a given vertex set?



The End

[m] z5 [w]
: L]
S

Thank you!


https://torossmann.github.io/cmea

