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Theme: tame vs wild

Given an instance of a global (say Z-defined) counting problem with local zeta functions
Zp(T) (p prime), we regard our instance as tame if there exists a rational function
W(X, T) such that Zp(T) =W(p, T) for p� 0.

This is often referred to as (almost) uniformity. In the study of p-adic integrals, model theorists use the
term “uniformity” to mean something else, which can be confusing.

Example
The local class-counting zeta functions of the Heisenberg group are given by the uniform
formula

Zcc
U3⊗Zp(T) =

1− T

(1− pT)(1− p2T)
.

Hence, counting conjugacy classes of U3(Z/pnZ) is tame.



Theme: tame vs wild
Informally, we regard a counting problem as (geometrically) wild if, by varying over
all or some instances, the behaviour of Zp(T) as p varies captures the numbers of
Fp-rational points on arbitrary (Z-defined) schemes.

Many counting problems of interest are at most geometrically wild. More precisely,
they often admit (geometric) Denef formulae, valid for p� 0, of the form

Zp(T) =
r∑
i=1

#Vi(Fp) ·Wi(p, T)

for schemes Vi and rational functions Wi(X, T).
Known tame counting problems are often combinatorial, while wild ones are
(algebro-)geometric.

When instances of counting problems are tame, we can seek to find combinatorial
(or other) reasons for that by e.g. showing that #Vi(Fp) ∈ Q[p] for p� 0.
Proving or exhibiting instances of wild behaviour is a very different kind of problem.
Far fewer tools have been developed for this purpose.



Average sizes of kernels and enumerating matrices by rank
Let A(X) ∈ Md×e(Z[X1, . . . , X`]) be a matrix of linear forms, corresponding to a
module representation θ : Z` → Md×e(Z), x 7→ A(x).

Let Vi be the “rank-i locus” of A(X).

This is the part of affine `-space where all (i + 1) × (i + 1) minors of A(X) vanish, but some i× i

minor is invertible.

We then have ask(θFq) =
∞∑
i=0

#Vi(Fq)qd−i−`.

Hence, for fixed θ, the study of ask(θFq) as q varies is at most as hard as counting
Fq-rational points on schemes.

Polynomiality questions surrounding rank counts in combinatorially-defined spaces
of matrices have been of considerable interest for a long time.

Some papers: Landsberg 1893, Carlitz 1954, MacWilliams 1969, Buckhiester 1972, Bender 1974,
Lewis et al. 2011, Klein et al. 2014



Wild problems

Recall that we regard a counting problem depending on a prime p or prime power q
as geometrically wild if it is at least as hard as counting Fp- or Fq-points on
arbitrary schemes.

Belkale and Brosnan (2003) showed the following:

Counting invertible symmetric n× n matrices over Fq with entries in specified
positions forced to be zero is a wild problem.

(More precise version below!)

I’m not aware of results of this type which prove wildness for zeta functions of
algebraic structures.

However, if we’re willing to settle for a weaker “approximate form” of wildness,
then the following result takes care of ask, class-counting, and orbit-counting zeta
functions.



Approximate wildness
Theorem (R. 2024)
Let X be a scheme of finite type over Z. Let n > 1. Then there are

commutative group schemes M1, . . . ,Mr with Mi 6 Udi ,
Baer group schemes G1, . . . , Gr, and
univariate Laurent polynomials f1, . . . , fr, g1, . . . , gr over Z

such that for each prime power q, the numbers

F(q) :=
r∑
i=1

fi(q) k(Gi(Fq)) and G(q) :=
r∑
i=1

gi(q)#(Fdiq /Mi(Fq))

are integers which satisfy

#X(Fq) ≡ F(q) ≡ G(q) (mod qn).

Given X, there exists n with #X(Fq) < qn for all q. Hence: class numbers and numbers
of orbits of unipotent groups are “at least as complicated” as numbers of Fq-rational
points on arbitrary schemes. We already saw that they’re at most this complicated.



Kontsevich’s conjecture

Let Γ = (V, E) be a graph.

Definition
The Kirchhoff polynomial of Γ is

PΓ (X) =
∑
T

∏
e 6∈T

Xe,

where the sum ranges over spanning trees of Γ .

Conjecture (Kontsevich)
For each Γ , the number of solutions of PΓ (X) = 0 (in AE) over Fq is given by a
polynomial in q.



Kontsevich’s conjecture
Theorem (Belkale and Brosnan 2003)
Kontsevich’s conjecture is maximally false: counting Fq-points of PΓ (X) = 0 as Γ ranges
over graphs is as hard as counting Fq-points on arbitrary schemes over Z.

Let Γ be a graph with distinct vertices v1, . . . , vn.

Let M+
Γ = [xij] be the generic symmetric n× n matrices with xij = 0 for vi ∼ vj.

Let ZΓ be the regular locus of M+
Γ .

As part of numerous clever translations and (equally clever!) reductions, Belkale
and Brosnan showed that the counting functions

q 7→ #ZΓ (Fq)

generate (a certain localisation of) the algebra of all point-counting functions
derived from schemes over Z.



Wild Baers

We can use this result to construct Baer group schemes with “approximately wild”
numbers of conjugacy classes as in our theorem.

Given Γ , consider

AΓ =

[
0 M+

Γ

−(M+
Γ )
> 0

]
.

This is an antisymmetric matrix of linear forms (over Z) which gives rise to an
alternating bilinear map ∗.

The Baer group schemes with “wild mod qn” numbers of conjugacy classes are
iterated central powers of the G∗—the number of factors depends on n.



Class-counting zeta functions of graphical groups: tame or wild?

How do class-counting zeta functions of graphical group schemes GΓ look like?

These zeta functions can be expressed in terms of the rank loci of generic
antisymmetric matrices with support constraints.
Inspired by the work of Belkale and Brosnan, this motivated R. & Voll to suspect
that graphical group schemes have wild class-counting zeta functions.
After all. . . how likely is it that wild pieces add up to something tame
(polynomial)?



∑
wild = tame, sometimes

Example (Carnevale & R. 2022)
Let

M =
{
[xij] ∈ M3(Z) : x11 + x33 = x12 + x21 = x13 + x22 + x32

= x23 + x31 = 0
}
.

We can consider the group scheme GM 6 GL6 (see the tutorial).
There are q3 − q orbits of size q3, q2 − q orbits of size q2, and q3 fixed points of
GM(Fq) acting on F6q.
The number of elements of GM(Fq) with precisely q5 fixed points on F6q is not
quasi-polynomial.
This number is (q − 1)(N(q) + 1), where N(q) is the number of roots of X5 + X − 1 in Fq.
By taking Knuth duals, the roles of orbit and fixed point set sizes can be
interchanged.



The Uniformity Theorem
It turns out that class-counting zeta functions of graphical groups are tame:

Theorem (R. & Voll 2024)
Let Γ be a graph with m edges. There exists WΓ (X, T) ∈ Q(X, T) such that for each
prime p,

Zcc
GΓ⊗Zp(T) =WΓ (p, p

mT).

(We could of course absorb the factor pm and just consider WΓ (X, X
mT) instead. We would then have

to adjust some of the formulae and identities below.)

Remark
Our proof is constructive and implemented in Zeta. It is based on a (quite
elaborate) recursion which uses toric geometry to analyse p-adic integrals attached
to ask zeta functions.
A list of these rational functions for graphs on at most 7 vertices is available online.
Some infinite families have received special attention.

https://torossmann.github.io/cico/


Theme: rigidity of ask zeta functions

In the study of ask zeta functions, one cannot help but notice examples of different
module representations giving rise to the same zeta functions.

Earlier example: gld(Zp) and sld(Zp) have the same ask zeta functions for d > 1.

(Carnevale & R. 2022): More generally, certain admissible linear relations have no
effect on ask zeta functions. The following is a fun application of this theme.

Let Fc,d be the group scheme associated with the free nilpotent Lie algebra of class
c and rank d. Example: F2,2 = U3
Fc,d can be defined by exponentiating the corresponding relatively free Lie algebra over Z[1/c!].
For p > c, the group Fc,d(Zp) is the free nilpotent pro-p group of class c on d generators.



Theme: rigidity of ask zeta functions
Theorem (Lins 2020)

Zcc
F2,d⊗Zp(T) =

1− p(
d−1
2 )T

(1− p(
d
2)T)(1− p(

d
2)+1T)

.

Two further proofs are known at this point.

The proof of the following theorem fits the theme of rigidity.

Theorem (Carnevale & R. 2022)
Let p > 5. Then:

Zcc
F3,d⊗Zp(T) =

(
1− p

(d−1)(d2+d−3)
3 T

)(
1− p

(d−2)d(d+2)
3 T

)
(
1− p

(d−1)d(d+1)
3 T

)(
1− p

d3−d+3
3 T

)(
1− p

(2d2+3d−11)d
6 T

) .



Theme: rigidity of ask zeta functions
Sketch of proof.

Let ac,d be the free algebra generated by d symbols subject to the relations x2 = 0
and x1(x2(· · · (xcxc+1) · · · )) = 0.
Let fc,d = ac,d/(Jacobi identity), the free class-c nilpotent Lie algebra of rank d.
Let αc,d (resp. α̂c,d) be the •-dual of the adjoint representation of ac,d (resp. fc,d).
General ask machinery: Zcc

Fc,d⊗Zp(T) = Zask
α̂

Zp
c,d

(T).
The ask zeta function of a module representation arising from a matrix of linear
forms A(X) is determined by the sequence of Fitting ideals of Coker(A(X)).
These are the ideals of minors of A(X), ordered in a certain way.
Induction and a Gröbner basis calculation (using Macaulay2 or SageMath) show
that for c = 3, our two module representations α3,d and α̂3,d give rise to the same
Fitting ideals. Hence, Zcc

F3,d⊗Zp(T) = Zask
α

Zp
3,d

(T).
The latter zeta functions turns out to (essentially) coincide with the class-counting
zeta function of graphical group schemes attached to so-called threshold graphs.
We can then read off our formula from known work (R. & Voll 2024). :) �



Theme: rigidity of ask zeta functions
It seems that we are only beginning to understand rigidity phenomena. Here is
another example. Let Γ = (V, E) be a simple graph with vertices v1, . . . , vn.

Let MΓ = {[xij] ∈ Mn(Z) : xij = 0 if vi ∼ vj}.

Let M+
Γ (M−

Γ ) consist of the symmetric (resp. antisymmetric) matrices in MΓ .

Theorem (R. & Voll 2025+)
Zask

ZpMΓ (T) = Zask
ZpM−

Γ

(T) = Zask
ZpM+

Γ

(T) (where the second equality needs p > 2.)

Example

Taking Γ = •−•−•, the theorem e.g. explains why
{[

a 0 b
0 c 0
d 0 e

]
: a, b, c, d, e ∈ Zp

}
and its

submodule
{[

a 0 b
0 c 0

−b 0 e

]
: a, b, c, e ∈ Zp

}
have the same ask zeta function.

The common ask zeta function is 1+T−2q
−1T−2q−2T+q−3T+q−3T2

(1−T)3
, in case you were wondering.



Theme: modelling theorems
A hypergraph is a triple H = (V, E, ı) consisting of finite sets V and E and an
incidence relation ı⊂ V × E. The elements of V and E are the vertices and
hyperedges of H, respectively.
Let V = {v1, . . . , vn} and E = {e1, . . . , em}. Let MH be the module of n×m
matrices [xij] over Z with xij = 0 unless vi ı ej.
The support of a hyperedge e is ‖e‖ = {v ∈ V : v ı e}.
Let ŴO(V) be the poset of (possibly empty) flags of (possibly empty) subsets of V .
Let µI = µI(H) be the number of hyperedges e with ‖e‖ = I. Define

IH(X, T) =
∑

y∈ŴO(V)

(1− X−1)|sup(y)|
∏
J∈y

X
|J|−

∑
I:I∩J 6=∅

µI

T

1− X
|J|−

∑
I:I∩J 6=∅

µI

T

.

Theorem (R. Voll 2024)
Zask

ZpMH
(T) = IH(p, T) for each prime p.



Theme: modelling theorems
Definition
Cographs are recursively defined as follows:

A graph consisting of a single vertex is a cograph.
If Γ and Γ ′ are cographs, then so are their disjoint union Γ ⊕ Γ ′ and their join Γ ∨ Γ ′.
The join Γ1 ∨ Γ2 is obtained from Γ1 ⊕ Γ2 by connecting each vertex of Γ1 to each vertex of Γ2.

Theorem (“Cograph modelling theorem”; R. & Voll 2024)
Let Γ be a cograph. Then there exists an explicit modelling hypergraph H = H(Γ)
with WΓ (X, T) = IH(X, T).

The point is that we have an explicit combinatorial Denef formula for IH(X, T) which
then allows us to deduce properties of WΓ (X, T) and hence of class-counting zeta
functions of cographical groups. Consequences include:

If Γ is a cograph, then the abscissa of convergence of ζcc
GΓ (s) is an integer.

If Γ is a cograph, then each real pole of ζcc
GΓ⊗Zp(s) is an integer.



Theme: operations
An attractive feature of ask zeta functions, and hence of class- and orbit-counting
zeta functions of unipotent groups, is that they are often well behaved
w.r.t. algebraic operations.
Knuth duality (and its harmless effects on ask zeta functions) are one example.
Given module representation M θ−→ Hom(V,W) and M ′ θ

′
−→ Hom(V ′,W ′), we

obtain
M⊕M ′ θ⊕θ

′
−−−→ Hom(V ⊕ V ′,W ⊕W ′).

Recall that the Hadamard product of F(T) =
∞∑
n=0

anT
n and G(T) =

∞∑
n=0

bnT
n is

F(T) ∗T G(T) =
∞∑
n=0

anbnT
n.

It is well known that Hadamard products of rational generating functions are
themselves rational.



Hadamard products
Lemma
Let θ and θ ′ be finite free module representations over Zp.
Then Zask

θ⊕θ ′(T) = Zask
θ (T) ∗T Zask

θ ′ (T). �

Lemma
Let G and G ′ be group schemes over Zp. Then Zcc

G×G ′(T) = Zcc
G (T) ∗T Zcc

G ′(T).

Proof.
We have k(G×G ′) = k(G) k(G ′) for finite groups G and G ′. �

Already for examples of the form Md×e(Zp), the study of Hadamard products of
ask zeta functions very naturally touches upon and involves permutation statistics.

We saw some glimpses of that in the tutorial.

More about this: see Angela’s third lecture. :)



Joins of graphs
Theorem (R. & Voll 2025+)
Let Γ1 and Γ2 be graphs on n1 and n2 vertices, respectively. Then

WΓ1∨Γ2(X, T) =
(
X1−n1−n2T − 1

+WΓ1(X,X
−n2T)(1− X−n2T)(1− X1−n2T)

+WΓ2(X,X
−n1T)(1− X−n1T)(1− X1−n1T)

)
/
(
(1− T)(1− XT)

)
.

Remark
In the special case that Γ1 and Γ2 are cographs, this was first proved by R. & Voll (2024).
(This used the Cograph Modelling Theorem.)

It remains open to conceptually understand the above product of generating functions.



Open problem: Hadamard products

At this point, we have a combinatorial understanding of Hadamard products

Zask
Md1×e1 (Zp)

∗T · · · ∗T Zask
Mdr×er (Zp)

when d1 − e1 = · · · = dr − er in terms of shuffles of coloured permutations
(Carnevale, Moustakas, R. 2024+).
This is e.g. sufficient to explicitly determine the class-counting zeta functions of
F2,d1 × · · · × F2,dr .

Problem
Given arbitrary (di, ei), provide a useful combinatorial interpretion of the above rational
generating function.



Open problem: free nilpotent groups
Question
Let c > 4.

Does there exist Wc,d(X, T) ∈ Q(X, T) with Zcc
Fc,d⊗Zp(T) =Wc,d(p, T) for p� 0?

If so, how does Wc,d(X, T) look like?

We saw that the answer is Yes for c = 2 and c = 3 (and any d).

O’Brien & Voll (2015) explicitly determined the number of conjugacy classes of
given size of Fc,d(Fq) in terms of Witt’s dimension formula. This takes care of the
coefficient of T in Zcc

Fc,d⊗Zp(T).

Contrary to what happens for c = 2, 3, we shouldn’t expect formulae of the form∏
(1− paiTbi)±1. Indeed:

Zcc
F4,2⊗Zp(T) =

p7T 3 − p6T 2 − p5T 2 + p4T 2 + p3T − p2T − pT + 1

(1− p7T 2)(1− p4T)2
.



Open problem: class-counting zeta functions of graphical groups

Given n, using the Cograph Modelling Theorem and the Uniformity Theorem for
hypergraphs, we can produce an explicit combinatorial Denef formula (specifically: a
sum over flags of subsets of {1, . . . , n}) for the rational functions WΓ (X, T) attached to
cographs on n vertices.

Question (R. & Voll 2024)
Let Γ be a simple graph.
1 Is the abscissa of convergence of ζcc

GΓ (s) always an integer?
2 Are the real parts of the poles of ζcc

GΓ⊗Zp(s) always half-integers?
3 Is there a meaningful “combinatorial Denef formula” for the WΓ (X, T) which is

valid for all graphs on a given vertex set?



The End.

Thank you!
Compiled on 2024-12-06 at 08:55:56 UTC.

https://torossmann.github.io/cmea

