Enumerating orbits of groups Lecture 2: Ask zeta functions

Tobias Rossmann

ICTS, Bengaluru — December 2024

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

Ask zeta functions v1.1

Let R be a ring. Let $M \xrightarrow{\theta} \text{Hom}_R(V, W)$ be a finite free module representation. By base change, for each R -algebra S , we obtain a finite free module representation

 $M \otimes_R S \xrightarrow{\theta^S} \text{Hom}_S(V \otimes_R S, W \otimes_R S).$

Definition

The (analytic) **ask zeta function** of θ is

$$
\zeta_{\theta}^{ask}(s) = \sum_{I} ask(\theta^{R/I}) \cdot |R/I|^{-s},
$$

where the sums runs over the ideals of finite norm of R.

This generalises our previous definition of $Z_{\theta}^{\text{ask}}(T)$. Indeed, if $R = \mathbf{Z}_{\text{p}}$, then $\zeta_{\theta}^{\text{ask}}(s) = Z_{\theta}^{\text{ask}}(p^{-s}).$

Ask zeta functions v1.1

Exercise

Let $M \xrightarrow{\theta} M_{d \times e}(\mathbf{Z})$ be finite free over \mathbf{Z} . Then: $\zeta_{\theta}^{\text{ask}}(s)$ converges for $\text{Re}(s) > d+1$. $\zeta_{\theta}^{\text{ask}}(s) = \prod_{\alpha} \zeta_{\theta}^{\text{ask}}$ p prime $\frac{\text{ask}}{\theta^{\mathbf{Z}_{\text{p}}}}(s)$.

Using tools from p-adic integration, much more can be said about these functions.

For example:

- The abscissa of convergence $\alpha = \alpha(\theta)$ of $\zeta_{\theta}^{\text{ask}}(s)$ is a rational number.
- For some $\delta = \delta(\theta) > 0$, the function $\zeta_{\theta}^{ask}(s)$ admits meromorphic continuation to the half-plane $\{s \in \mathbb{C} : \text{Re}(s) > \alpha - \delta\}.$
- Local functional equations / "self-reciprocity": for $p \gg 0$,

$$
\zeta_{\theta^{Z_p}}^{\text{ask}}(s) \Biggm|_{p \leftarrow p^{-1}} \! = (-p^{d-s}) \cdot \zeta_{\theta^{Z_p}}^{\text{ask}}(s).
$$

An instructive example of an ask zeta function

Motivated by probabilistic questions, Linial and Weitz (2000, unpublished) and, independently, Fulman and Goldstein (2015) proved the following.

Proposition

 $\mathsf{ask}(\mathrm{M}_{d \times e}(\mathbf{F}_q)) = 1 + q^{d-e} - q^{-e}.$

The main goal of this lecture will be to prove the following.

Proposition (R. 2018)

For each prime p,

$$
Z^{ask}_{\mathrm{M}_{d\times e}(\mathbf{Z}_p)}(T)=\frac{1-p^{-e}T}{(1-T)(1-p^{d-e}T)}=1+(1+p^{d-e}-p^{-e})T+\mathcal{O}(T^2).
$$

Our proof will rely on three tools, all of which have been very useful in the study of ask zeta functions: $\widehat{1}$) p-adic integration, $\widehat{2}$) constant rank spaces, and $\widehat{3}$) Knuth duality.

An instructive example of an ask zeta function

By combining $Z_{\mathrm{M}_{d\times e}(\mathbf{Z}_{p})}^{\mathrm{ask}}(T) = \frac{1-p^{-e}T}{(1-T)(1-p^{d})}$ $\frac{1-p}{(1-T)(1-p^{d-e}T)}$ and the usual Euler product

$$
\zeta(s)=\sum_{n=1}^\infty n^{-s}=\prod_{p\text{ prime}}\frac{1}{1-p^{-s}}
$$

of the Riemann zeta function, we obtain the following.

Corollary $\zeta^{\text{ask}}_{\text{M}_{d\times e}(\mathbf{Z})}(s) = \zeta(s)\zeta(s-d+e)/\zeta(s+e).$ Local ask zeta functions as integrals: motivation

- What is the size of the kernel of a matrix $\mathcal{A}=$ $\begin{bmatrix} a & b \end{bmatrix}$
- We're free to multiply A by elements of $GL_2(\mathbb{Z}_p)$ on either side. Using row and column operations, we can transform \overline{A} into a matrix

$$
B = \begin{bmatrix} p^{\alpha} & 0 \\ 0 & p^{\beta} \end{bmatrix}
$$

c d

1

 $\in M_2(\mathbf{Z}_p)$ modulo p^n ?

with $0 \le \alpha \le \beta \le \infty$.

The kernel of multiplication $\mathbf{Z}/p^n\mathbf{Z} \xrightarrow{p^\delta} \mathbf{Z}/p^n\mathbf{Z}$ is the ideal generated by $p^{\max(n-\delta,0)}.$

The size of this kernel is $p^{n-\max(n-\delta,0)} = p^{\min(\delta,n)}$.

- Hence, the kernel of A modulo p^n has size $p^{\min(\alpha,n)+\min(\beta,n)}$.
- Write v for the (additive) p-adic valuation with $v(p) = 1$.

Then $\alpha = \min(v(a), v(b), v(c), v(d))$ and $\alpha + \beta = v(\det(A)).$

Local ask zeta functions as integrals

- Let $M \xrightarrow{\theta} M_{d \times e}(\mathbf{Z}_p)$ be a finite free module representation.
- It's not surprising that $\zeta^{\text{ask}}_{\theta}(s)$, a function defined as a series of averages, can be expressed as an integral. Here's one way of doing this.
- For $a \in M$ and $y \in \mathbb{Z}_p$, let $K_{\theta}(a, y) \in [1, \infty]$ be the size of the kernel of the map

 $({\bf Z}_{\rm p}/{\rm y}{\bf Z}_{\rm p})^{\rm d} \rightarrow ({\bf Z}_{\rm p}/{\rm y}{\bf Z}_{\rm p})^{\rm e}$

induced by $a\theta$.

Let $\lvert\cdot\rvert$ be the usual p -adic absolute value (on \mathbf{Z}_p , say) with $\lvert p\rvert=p^{-1}.$

Proposition (R. 2018)

For $s \in \mathbb{C}$ with $\text{Re}(s) > d$,

$$
(1-p^{-1})\cdot \zeta_{\theta}^{ask}(s)=\int\limits_{M\times \mathbf{Z}_{p}}|y|^{s-1}\operatorname{K}_{\theta}(a,y)\operatorname{d}\!\mu(a,y), \qquad \qquad (1)
$$

where μ denotes the Haar measure on $M \times \mathbb{Z}_p$ with total volume 1.

Local ask zeta functions as integrals: minors

• We may assume that $a\theta = A(a)$ for a matrix of linear forms $A(X) \in M_{d \times e}(\mathbf{Z}_{p}[X]).$

 \bullet Using arguments of Voll (2010) and generalising what we did for 2×2 matrices, we can express $K_{\theta}(\mathfrak{a}, \mathfrak{y})$ in terms of p-adic maximum norms of minors of $A(\mathfrak{a})$ and y:

Lemma

Let $f_i(X)$ be the set of $i \times i$ minors of $A(X)$. Let $r = max(rk_{\mathbf{Q}_p}(A(\mathfrak{a})) : \mathfrak{a} \in M)$ and let $\mathsf{N} =$ {a \in M : $\mathrm{rk}_{\mathbf{Q}_{\mathfrak{p}}}(A(\mathfrak{a})) <$ $\mathfrak{r}\}$. Then N has measure zero (w.r.t. the normalised Haar measure on M) and for all $a \in M \setminus N$ and $y \in \mathbb{Z}_p \setminus \{0\}$,

$$
\mathrm{K}_{\theta}(a,y)=|y|^{r-d}\prod_{i=1}^r\frac{\|f_{i-1}(a)\|}{\|f_{i}(a)\cup yf_{i-1}(a)\|}.
$$

Local ask zeta functions as integrals: minors

Proof.

- Fix $a \in M \setminus N$ and $y \in \mathbb{Z}_p \setminus \{0\}$. Let $n = v(y)$.
- By basic linear algebra ("elementary divisor theorem", "Smith normal form"), there are integers $0 \le \lambda_1 \le \cdots \le \lambda_r$ and matrices $R \in GL_d(\mathbf{Z}_n)$ and $S \in GL_e(\mathbf{Z}_n)$ such that

$$
RA(a)S = diag(p^{\lambda_1}, \ldots, p^{\lambda_r}, 0, \ldots, 0) =: D.
$$

• Linear algebra also tells us that $A(a)$ and D have the same ideals of minors of any order. Since the ideal of $\mathrm{i}\times \mathrm{i}$ minors of D is generated by $\mathrm{p}^{\lambda_1+\cdots+\lambda_\mathrm{i}}$, we obtain

 $||f_i(a)|| = p^{-\lambda_1 - \cdots -\lambda_i}.$

Local ask zeta functions as integrals: minors

Proof (contd).

• Generalising our motivating 2×2 example, looking at D, we find that

$$
\mathrm{K}_{\theta}(\mathfrak{a},y)=p^{\min(\lambda_1,n)+\cdots+\min(\lambda_r,n)+(d-r)n}.
$$

• The claim follows since

$$
p^{\min(\lambda_i, n)} = \frac{1}{\max(p^{-\lambda_i}, p^{-n})} = \frac{p^{-\lambda_1 - \dots - \lambda_{i-1}}}{\max(p^{-\lambda_1 - \dots - \lambda_i}, p^{-n - \lambda_1 - \dots - \lambda_{i-1}})}
$$

=
$$
\frac{||f_{i-1}(a)||}{||f_i(a) \cup y f_{i-1}(a)||}.
$$

Local ask zeta functions as integrals: overview

Given $M \xrightarrow{\theta} M_{d \times e}(\mathbf{Z}_{p})$, we obtained a number r and sets of polynomials $f_i(X)$ such that

$$
(1-p^{-1})\cdot \zeta_{\theta}^{ask}(s)=\int\limits_{M\times \mathbf{Z}_{p}}\lvert y\rvert^{s+r-d-1}\prod_{i=1}^{r}\frac{\lVert f_{i-1}(a)\rVert}{\lVert f_{i}(a)\cup y f_{i-1}(a)\rVert}\,\mathrm{d}\mu(a,y).
$$

- While potentially unwieldy, these p-adic integrals are amenable to a wide range of tools developed over the past decades.
- Many of these tools were first pioneered in the study of Igusa's local zeta function.
- Key observation: when the $f_i(X)$ only consist of monomials, then our integral can be computed using techniques from polyhedral geometry.

Local ask zeta functions as integrals: consequences

Here, we just record two important consequences:

Theorem (Local rationality)

 $\mathsf{Z}_\theta^{\mathsf{ask}}(\mathsf{T}) \in \mathbf{Q}(\mathsf{T})$. More precisely, there are $\mathfrak{m} \in \mathbf{N}_0$ and nonzero $(a_1, b_1), \ldots, (a_u, b_u) \in \mathbf{Z} \times \mathbf{N}_0$ such that $p^m \prod_{i=1}^u$ i=1 $(1 - p^{a_i}T^{b_i})Z_{\theta}^{ask}(T) \in \mathbf{Z}[T].$

Theorem (Variation of the prime: "(geometric) Denef formulae")

Let $M \xrightarrow{\theta} M_{d \times e}(\mathbf{Z})$ be a finite free module representation. There are $W_1(X, T), \ldots, W_r(X, T) \in \mathbf{Q}(X, T)$ (which can be written over denominators of the same shape as above) and Q-defined varieties V_1, \ldots, V_r such that $p \gg 0$.

$$
Z_{\theta^{Zp}}^{\text{ask}}(T)=\sum_{i=1}^r \#\bar{V}_i(\mathbf{F}_p)\cdot W_i(p,T),
$$

where $\overline{\cdot}$ denotes reduction modulo p of fixed **Z**-forms.

The friendlist ask zeta functions: constant rank spaces

Definition

Let F be a field. A subspace $M \subset M_{d \times e}(F)$ has **constant rank** r if $M \neq 0$ and $rk(a) = r$ for all $a \in M \setminus \{0\}$.

Example

Let D be a d-dimensional division algebra over F. Then the regular representation of D embeds D as a subspace of $M_d(F)$ of constant rank d.

Example (band matrices)

The following is an r-dimensional space of $r \times (2r - 1)$ matrices of constant rank r:

$$
B_r=\left\{\left[\begin{matrix}x_1&x_2&\ldots&x_r\\&\ddots&\ddots&\ddots&\ddots\\&&x_1&x_2&\ldots&x_r\end{matrix}\right]:x_1,\ldots,x_r\in F\right\}\subset M_{r\times(2r-1)}(F).
$$

The friendlist ask zeta functions: constant rank spaces

Proposition (R. 2018)

Let $M \subset M_{d \times e}(\mathbf{Z}_{p})$ be an isolated submodule of \mathbf{Z}_{p} -rank ℓ . Let $r = max(rk_{\mathbf{Q}_{\mathbf{p}}}(a) : a \in M)$. Suppose that the reduction of M modulo p has constant rank r over F_p . (Same $r!$) Then

$$
Z_M^{ask}(T) = \frac{1 - p^{d-\ell-r}T}{(1 - p^{d-\ell}T)(1 - p^{d-r}T)}.
$$

The friendlist ask zeta functions: constant rank spaces

Sketch of proof.

- Let $M_{d\times e}(\mathbf{Z}_p) \stackrel{\rightarrow}{\rightarrow} M_{d\times e}(\mathbf{F}_p)$ denote reduction modulo p.
- Since M is isolated, $\overline{\cdot}$ induces an isomorphism $M/pM \approx \overline{M}$.
- Next, one reduces the computation of $K_M(a, y)$ to the case that $a \in M \setminus pM$. Key observation: $K_M(pa, py) = p^d K(a, y)$. This leads to

$$
(1-p^{d-\ell-s})\cdot \zeta_M^{ask}(s)=1+(1-p^{-1})^{-1}\int\limits_{(M\setminus pM)\times p{\bf Z}_p}|y|^{s-1}\, \mathrm{K}_M(a,y)\,\mathrm{d}\mu(a,y).
$$

For $a \in \mathsf{M} \setminus \mathfrak{p} \mathsf{M}$, since $\bar{\mathsf{M}}$ has constant rank r , $\mathrm{K}_{\mathsf{M}}(a, \mathsf{p}) = \mathsf{p}^{d-r}$ and, more generally,

$$
K_M(a,y) = |y|^{r-d}
$$

for all $y \in \mathbf{Z}_p \setminus \{0\}$.

• Evaluating our integral is now straightforward. :)

Hidden constant rank spaces?

We just proved this:

Proposition

Let $M \subset M_{d \times e}(\mathbf{Z}_{p})$ be an isolated submodule of \mathbf{Z}_{p} -rank ℓ . Let $r = max(rk_{\mathbf{Q}_{\mathbf{p}}}(a) : a \in M)$.

Suppose that the reduction of M modulo p has constant rank r over \mathbf{F}_{p} . Then

$$
Z_M^{ask}(T)=\frac{1-p^{d-r-\ell}T}{(1-p^{d-\ell}T)(1-p^{d-r}T)}
$$

.

I promised to prove the following:

Proposition

$$
\mathsf{Z}^{\mathsf{ask}}_{\mathrm{M}_{d\times e}(\mathbf{Z}_p)}(\mathsf{T})=\frac{1-p^{-e}\mathsf{T}}{(1-\mathsf{T})(1-p^{d-e}\mathsf{T})}.
$$

Suspiciously similar formulae... even though $M_{d\times e}(\mathbf{Z}_p)$ is about as far from having constant rank as you can get!

- Let $M \xrightarrow{\theta} \text{Hom}(V, W)$ be a module representation over R.
- Let $(\cdot)^* = \text{Hom}(\cdot, R)$ be the usual dual of R-modules.
- Recall that for $A \xrightarrow{\alpha} B$, α^* is the map $B^* \to A^*$ given by $\psi \alpha^* = \alpha \psi$.
- \bullet Up to taking duals, we can "permute" the modules M, V, and W to derive further module representations. We'll spell this out for the three "involutions".
- Recall that $x *_\theta a = x(a\theta)$ for $x \in V$ and $a \in M$.

Definition

The **Knuth duals** of θ are:

- $V \stackrel{\theta^{\circ}}{\longrightarrow} \text{Hom}(M, W)$ with $a *_{\theta^{\circ}} x = x *_{\theta} a$ for $a \in M$ and $x \in V$.
- $W^*\overset{\theta^{\bullet}}{\underset{\alpha\vee}{\longrightarrow}}\mathrm{Hom}(V,M^*)$ with $\alpha(x*_\theta\bullet\psi)=(x*_\theta\alpha)\psi$ for $\alpha\in M,$ $x\in V,$ and $\psi\in W^*.$ $M \xrightarrow{\theta^{\vee}} \text{Hom}(W^*, V^*)$ with $\mathfrak{a} \theta^{\vee} = (\mathfrak{a} \theta)^*$ for $\mathfrak{a} \in M$.

Example

Let $\mathcal{A}(\mathsf{X})\in\mathrm{M}_{\mathbf{d}\times\mathbf{e}}(\mathsf{R}[\mathsf{X}_1,\ldots,\mathsf{X}_\ell])$ be a matrix of linear forms, say

$$
A(X) = \left[\sum_{h=1}^{\ell} c_{hij} X_h\right]_{ij}.
$$

Up to isotopy, \circ , •, and \vee are the involutions permuting our three "axes". In detail:

 $A(X)^\circ$ is the $\ell \times e$ matrix with (h,j) entry $\sum\limits_{}^{\text{d}}$ $c_{\rm hij} X_i$

 $A(X)^\bullet$ is the $\mathrm{d}\times \ell$ matrix with (i, h) entry $\sum\limits_{}^e$ j=1 $c_{\rm hij} X_j$.

 $A(X)^{\vee} = A(X)^{\top}$ is just the transpose of $A(X)$.

For $\ell = d = e$, this is the setting considered by Knuth (1965) in the study of *semifields*.

i=1

Theorem (R. 2020)

Let R be a finite quotient of a Dedekind domain (e.g. $R = Z/nZ$). Let $M \xrightarrow{\theta} \text{Hom}(V, W)$ be a module representation over R. Suppose that M, V, and W are finite. Then:

\n- $$
ask(\theta^{\circ}) = \frac{|M|}{|V|} ask(\theta)
$$
.
\n- $ask(\theta^{\bullet}) = ask(\theta)$.
\n- $ask(\theta^{\vee}) = \frac{|W|}{|V|} ask(\theta)$.
\n

Corollary

Let $\mathbf{Z}_{\rm p}^{\ell} \approx \mathsf{M} \xrightarrow{\theta} \mathrm{M}_{\rm d \times e}(\mathbf{Z}_{\rm p})$ be a module representation over $\mathbf{Z}_{\rm p}$. Then:

$$
Z^{\text{ask}}_\theta(T)=Z^{\text{ask}}_{\theta^\circ}(p^{d-\ell}T)=Z^{\text{ask}}_{\theta^\vee}(q^{d-e}T)=Z^{\text{ask}}_{\theta^\bullet}(T).
$$

Proof of theorem.

• We'll only prove the first part. This only needs $|R| < \infty$ and goes back to an unpublished note of Linial and Weitz (2020) mentioned before.

o Let

 $\Sigma(\theta) = \big\{ (x, \alpha) \in V \times M : x *_\theta \alpha = 0 \big\}$

and note that $(x, a) \in \Sigma(\theta)$ if and only if $(a, x) \in \Sigma(\theta^{\circ})$.

Clearly, $ask(\theta) = \frac{|\Sigma(\theta)|}{|M|}$.

• Hence.

$$
\mathsf{ask}(\theta^\circ) = \frac{|\Sigma(\theta^\circ)|}{|V|} = \frac{|\Sigma(\theta)|}{|V|} = \frac{|M|}{|V|} \mathsf{ask}(\theta).
$$

This was the same argument as in the proof of the orbit-counting lemma!

Ask zeta functions of generic matrices

We can now finally prove the following:

Proposition

$$
Z^{ask}_{M_{d\times e}(\mathbf{Z}_p)}(T)=\frac{1-p^{-e}T}{(1-T)(1-p^{d-e}T)}.
$$

Sketch of proof.

Over a field F, the \circ -dual of the identity map $M_{d \times e}(F) \to \text{Hom}(F^d, F^e)$ is

 $F^d \to \text{Hom}(M_{d \times e}(F), F^e), \quad x \mapsto (A \mapsto xA).$

- By playing with the standard basis of $M_{d\times e}(F)$, we see that $A \mapsto \chi A$ is onto for each nonzero $x \in F^d$.
- Hence, our ○-dual parameterises a space of constant rank e.
- Now apply our earlier results on ask zeta functions of ∘-duals and those of constant rank spaces.

Ask zeta functions of generic matrices

Proof (less sketchy).

- Let *i* be the identity on $M_{d\times e}(\mathbf{Z}_p)$, viewed as a module representation $M_{d \times e}(\mathbf{Z}_{p}) \to \text{Hom}(\mathbf{Z}_{p}^{d}, \mathbf{Z}_{p}^{e}).$
- We obtain $\mathbf{Z}_\mathrm{p}^\mathrm{d}$ $\stackrel{\iota^{\circ}}{\longrightarrow}$ Hom($M_{d \times e}(\mathbf{Z}_{p}), \mathbf{Z}_{p}^{e}$), $x \mapsto (A \mapsto xA)$.
- Considering the same module representation over a field, if $x \neq 0$, then $A \mapsto xA$ is onto. Hence, $\mathfrak{t}^{\circ} \bmod p$ parameterises a space of matrices of constant rank $e.$
- \bullet Hence, using our earlier theorem (with (d, e, de, e) in place of (ℓ, r, d, e)) yields

$$
Z_{\iota^{\circ}}^{\mathsf{ask}}(T) = \frac{1 - p^{\mathsf{de}-\mathsf{d}-\mathsf{e}}T}{(1 - p^{\mathsf{de}-\mathsf{d}}T)(1 - p^{\mathsf{de}-\mathsf{e}}T)}.
$$

• Thus, finally,

$$
Z_{\mathrm{M}_{d\times e}(\mathbf{Z}_p)}^{\text{ask}}(T)=Z_{\iota}^{\text{ask}}(T)=Z_{\iota^{\circ}}^{\text{ask}}(p^{d-de}T)=\frac{1-p^{-e}T}{(1-T)(1-p^{d-e}T)},
$$

as claimed.

Further examples

Similar reasoning applies to many of the "usual suspects" among modules of matrices. Recall the definitions of the **special linear**, **orthogonal**, and **symplectic** Lie algebras

$$
\begin{aligned} \mathfrak{sl}_d(R) &= \Big\{ a \in \mathfrak{gl}_d(R) : \operatorname{trace}(a) = 0 \Big\}, \\ \mathfrak{so}_d(R) &= \Big\{ a \in \mathfrak{gl}_d(R) : a + a^\top = 0 \Big\}, \quad \text{and} \\ \mathfrak{sp}_{2d}(R) &= \left\{ \begin{bmatrix} a & b \\ c & -a^\top \end{bmatrix} : a, b, c \in \mathrm{M}_d(R), b = b^\top, c = c^\top \right\}. \end{aligned}
$$

Further examples

Proposition (R. 2018)

\n- \n
$$
Z_{\mathfrak{sl}_d(\mathbf{Z}_p)}^{\text{ask}}(T) = Z_{\mathfrak{gl}_d(\mathbf{Z}_p)}^{\text{ask}}(T) = \frac{1 - p^{-d}T}{(1 - T)^2} \text{ (for } d > 1\text{)}.
$$
\n
\n- \n
$$
Z_{\mathfrak{so}_d(\mathbf{Z}_p)}^{\text{ask}}(T) = Z_{M_{d \times (d-1)}(\mathbf{Z}_p)}^{\text{ask}}(T) = \frac{1 - p^{1 - d}T}{(1 - T)(1 - pT)}.
$$
\n
\n- \n
$$
Z_{\mathfrak{sp}_{2d}(\mathbf{Z}_p)}^{\text{ask}}(T) = Z_{\mathfrak{gl}_{2d}(\mathbf{Z}_p)}^{\text{ask}}(T) = \frac{1 - p^{-2d}T}{(1 - T)^2}.
$$
\n
\n- \n
$$
Z_{\mathfrak{n}_d(\mathbf{Z}_p)}^{\text{ask}}(T) = \frac{(1 - T)^{d - 1}}{(1 - pT)^d}.
$$
\n
\n

- All but the last of these examples are explained by hidden constant rank spaces.
- We nowadays understand such coincidences between ask zeta functions much better. In particular:
	- The fact that $\mathfrak{gl}_d(\mathbf{Z}_p)$ and $\mathfrak{sl}_d(\mathbf{Z}_p)$ have the same ask zeta function is an instance of a more general phenomenon: the rigidity of ask zeta functions under imposing suitably "admissible" linear relations (Carnevale & R. 2022).
	- The fact that $\mathfrak{so}_{d}(\mathbf{Z}_{p})$ and $M_{d \times (d-1)}(\mathbf{Z}_{p})$ have the same ask zeta function is a special case of the "Cograph Modelling Theorem" (R. & Voll 2024).