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Ask zeta functions v1.1

Let R be a ring. Let M 2 Homg (V, W) be a finite free module representation. By base
change, for each R-algebra S, we obtain a finite free module representation

Mion'S 2 Home (V. 0n S 0 5 5.

Definition
The (analytic) ask zeta function of 6 is

(F(s) =) ask(6%1) - [R/I 7,
I

where the sums runs over the ideals of finite norm of R.

This generalises our previous definition of ZSSk(T). Indeed, if R = Z,, then

C&(s) = Z8(p ™).



Ask zeta functions v1.1
Exercise

Let M & Mgxe(Z) be finite free over Z. Then:
° Cg,s"(s) converges for Re(s) > d + 1.

o (F(s)= TI (s
P prime
Using tools from p-adic integration, much more can be said about these functions.
For example:

@ The abscissa of convergence o« = (0) of CSSk(s) is a rational number.

@ For some 6 = 6(0) > 0, the function CaSk( ) admits meromorphic continuation to
the half-plane {s € C : Re(s) > a— 6}

@ Local functional equations / “self-reciprocity”: for p > 0,

{35 (s) = (—p%) - 3 (s).

P



An instructive example of an ask zeta function

Motivated by probabilistic questions, Linial and Weitz (2000, unpublished) and,
independently, Fulman and Goldstein (2015) proved the following.

Proposition
35k(Md><e(Fq)) =1+ qd_e —q°.

The main goal of this lecture will be to prove the following.
Proposition (R. 2018)
For each prime p,

1—peT

ask _ _ d—e .. —e 2
I\ ye(z,)(T) = A-T)0 —peeT) — 1+(1+p P OT+O(T?).

Our proof will rely on three tools, all of which have been very useful in the study of ask
zeta functions: @ p-adic integration, @ constant rank spaces, and @ Knuth duality.



An instructive example of an ask zeta function

By combining Zla\f‘[zxe(zp)(T) = (]7—%6]::—,6“ and the usual Euler product

:in 1_

n=1 P prime

of the Riemann zeta function, we obtain the following.

Corollary
i@ (8) = Us)C(s —d+e)/C(s +e).



Local ask zeta functions as integrals: motivation
b

@ What is the size of the kernel of a matrix A = [2 d

] € Mz(Z,) modulo p"?

e We're free to multiply A by elements of GL;(Z,) on either side. Using row and
column operations, we can transform A into a matrix

pasiid
Bi=
5

o
@ The kernel of multiplication Z/p"Z L Z/p"Z is the ideal generated by
max(n—95,0)
Pt s

with 0 < o < B < o0.

The size of this kernel is pn~max(n=3,0) — pmin(dn)
@ Hence, the kernel of A modulo p™ has size p™in(emn)+min(Bn)
e Write v for the (additive) p-adic valuation with v(p) = 1.

Then o = min(v(a),v(b),v(c),v(d)) and &+ B = v(det(A)).



Local ask zeta functions as integrals

o letM % Maxe(Zp) be a finite free module representation.

@ It's not surprising that CSSk(s), a function defined as a series of averages, can be
expressed as an integral. Here's one way of doing this.

@ Forae M andy € Zy, let Kg(a,y) € [1,00] be the size of the kernel of the map

(Zp/yzp)d T (Zp/yzp)e

induced by af.
o Let |-| be the usual p-adic absolute value (on Z,, say) with |[p| =p

Proposition (R. 2018)
For s € C with Re(s) > d,

]

(—p ") *(s) = J [yl Ko(a,y) dula, u), (1)
MxZyp

where | denotes the Haar measure on M x Z, with total volume 1.



Local ask zeta functions as integrals: minors

o We may assume that a®@ = A(a) for a matrix of linear forms A(X) € Mgxe(Zp[X]).
@ Using arguments of Voll (2010) and generalising what we did for 2 x 2 matrices, we
can express Kg(a,y) in terms of p-adic maximum norms of minors of A(a) and y:

Lemma

Let fi(X) be the set of i x i minors of A(X). Let T = max(rkq, (A(a)): a € M) and
let N ={a € M :1kq,(A(a)) <1}. Then N has measure zero (w.r.t. the normalised
Haar measure on M) and for alla € M\ N and y € Z, \ {0},

fia(
’y“r dH || i— | .
[Ifi(a nyl 1(a)]




Local ask zeta functions as integrals: minors

Proof.

e Fixae M\ Nandy e Z,\{0}. Let n =v(y).
@ By basic linear algebra (“elementary divisor theorem”, “Smith normal form™), there
are integers 0 <Ay < --- < A and matrices R € GL4(Zp) and S € GL¢(Z,) such

that
RA(a)S = diag(p™,...,p™,0,...,0) = D.

@ Linear algebra also tells us that A(a) and D have the same ideals of minors of any
order. Since the ideal of i x i minors of D is generated by p*' ™A we obtain

[fi(a)] = p=,



Local ask zeta functions as integrals: minors

Proof (contd).

@ Generalising our motivating 2 x 2 example, looking at D, we find that

Ko(a,y) = pmin(7\1,n)+---+min(7\r,n)+(d_r)n
) o .

@ The claim follows since

A A
min(A{,n) __ 1 P ! e

’ " max(p,p ) max(p M pr A )

i1 (a)]
Ifi(a) Uyfii(a)]”




Local ask zeta functions as integrals: overview

Given M % Masxe(Zp), we obtained a number 1 and sets of polynomials fi(X) such that

5 [fi1(a)]
(] oy 1) : CaSk(S) o J s+r—d—1 a ((1, )
P 0 Al |y| HHf ny11 )H [ Yy
P

o While potentially unwieldy, these p-adic integrals are amenable to a wide range of
tools developed over the past decades.

@ Many of these tools were first pioneered in the study of Igusa’s local zeta function.

o Key observation: when the f;(X) only consist of monomials, then our integral can
be computed using techniques from polyhedral geometry.



Local ask zeta functions as integrals: consequences
Here, we just record two important consequences:

Theorem (Local rationality)
ng"(T) € Q(T). More precisely, there are m € Ny and nonzero
u
(a1,b1)y..+, (@uyby) € Z x Ny such that p™ [ (1 — p&TP)Z3(T) € Z[T].

=1
Theorem (Variation of the prime: “(geometric) Denef formulae™)

Let M & Maxe(Z) be a finite free module representation. There are
Wi (X, T)y ..., WL (X, T) € Q(X, T) (which can be written over denominators of the
same shape as above) and Q-defined varieties V1, ..., V, such that p > 0,

735K (T) Z #Vi(F p,T),

where - denotes reduction modulo p of fixed Z-forms.



The friendlist ask zeta functions: constant rank spaces
Definition
Let F be a field. A subspace M C Mgy (F) has constant rank r if M # 0 and
rk(a) = for all a € M \ {0}.

Example
Let D be a d-dimensional division algebra over F. Then the regular representation of D
embeds D as a subspace of Mg4(F) of constant rank d.

Example (band matrices)

The following is an r-dimensional space of r x (2r — 1) matrices of constant rank r:

B, = IX7y...,Xr €F CMrX(Zr—I)(F)'

X1 X2 ... Xy



The friendlist ask zeta functions: constant rank spaces

Proposition (R. 2018)

Let M C Maxe(Zy) be an isolated submodule of Z,-rank (.
Let v = max(rkq,(a) : a € M).
Suppose that the reduction of M modulo p has constant rank r over F,. (Same v!)

Then
1— P dfffrT

(1 —pdtD)(1 —pdTT)’

Z¥(m =



The friendlist ask zeta functions: constant rank spaces
Sketch of proof.

o Let Maxe(Zp) — Maxe(Fp) denote reduction modulo p.

@ Since M is isolated, - induces an isomorphism M /pM =~ M.

@ Next, one reduces the computation of Ky(a,y) to the case that a € M\ pM.
Key observation: Ky (pa,py) = p?K(a,y).

This leads to

1-pt )@k =1+ 0= [ i Kulay)dula,y).
(M\pM) xpZp
@ For a € M\ pM, since M has constant rank T, Km(a,p) :p‘jl*r and, more
generally,
Km(a,y) = [y

for ally € Z, \ {0}.
e Evaluating our integral is now straightforward. :)



Hidden constant rank spaces?
We just proved this:

Proposition

Let M C Maxe(Zy) be an isolated submodule of Z,-rank (.

Let T = max(rkq,(a) : a € M).

Suppose that the reduction of M modulo p has constant rank v over F,,. Then
1— pd—r—eT

ask _
A = e — ey

| promised to prove the following:
Proposition

ask (T) _ 1 _pieT
Maxe(Zp) (1—T)(1 _pd—eT)‘

Suspiciously similar formulae. .. even though Mgy.(Z,) is about as far from having
constant rank as you can get!



Knuth duality (or: matrix transposes turned up to 11)

Let M Hom(V, W) be a module representation over R.

Let (-)* = Hom(-, R) be the usual dual of R-modules.

Recall that for A 5 B, «* is the map B* — A* given by po* = o).

Up to taking duals, we can “permute” the modules M, V, and W to derive further
module representations. We'll spell this out for the three “involutions’.

@ Recall that x g a = x(af) for x € V and a € M.

Definition

The Knuth duals of 0 are:
° VﬂHom(M,W) with a *go x = x xg a for a € M and x € V.
o W &, Hom (V, M*) with a(x xge V) = (x*ga)P fora e M, x € V, and ) €
oM LN Hom(W*, V*) with a®¥ = (af)* for a € M.



Knuth duality (or: matrix transposes turned up to 11)

Example
Let A(X) € Mgxe(R[X1,...,X¢]) be a matrix of linear forms, say

{4
A(X) = [Z chi]—Xh] .
h=1 5

i
Up to isotopy, o, e, and \V are the involutions permuting our three “axes”. In detail:
d
o A(X)°is the £ x e matrix with (h,j) entry } cpyX;.
i=1
&
o A(X)* is the d x { matrix with (i,h) entry 3 cpi;X;.
j=1
o A(X)V =A(X)" is just the transpose of A(X).
For { = d = e, this is the setting considered by Knuth (1965) in the study of semifields.



Knuth duality (or: matrix transposes turned up to 11)

Theorem (R. 2020)

Let R be a finite quotient of a Dedekind domain (e.g. R =Z7Z/nZ).
Let M 2 Hom(V, W) be a module representation over R.
Suppose that M, V, and W are finite. Then:

@ ask(0°) = ||A\/,l|| ask(0).

@ ask(0°®) = ask(0).

o ask(0Y) = ||\<,V|| ask(0).

Corollary

Let Z]‘; ~M 4 Maxe(Zp) be a module representation over Z,,. Then:

ZPK(T) = Z§(p*'T) = Z§¥(q*°T) = Z§(T).



Knuth duality (or: matrix transposes turned up to 11)

Proof of theorem.

e We'll only prove the first part. This only needs |R| < oo and goes back to an

unpublished note of Linial and Weitz (2020) mentioned before.
o Let

L(0) ={(x,a) e VxM:x*sa=0}
and note that (x,a) € Z(0) if and only if (a,x) € X(0°).
o Clearly, ask(0) = %.
@ Hence,
_Z@°)] _ |z _ M|
4 VI V|

This was the same argument as in the proof of the orbit-counting lemmal

ask(0°) ask(0).



Ask zeta functions of generic matrices

We can now finally prove the following:

Proposition

1—p €T
ask P

T) = .
dee(zp)( ) 1—T)(1 _pd—eT)

Sketch of proof.
@ Over a field F, the o-dual of the identity map Mgye(F) — Hom(F4, Fé) is

F¢ — Hom(Mgxe(F),F¢), x— (A — xA).

@ By playing with the standard basis of Mgy (F), we see that A — xA is onto for
each nonzero x € F4.

@ Hence, our o-dual parameterises a space of constant rank e.

@ Now apply our earlier results on ask zeta functions of o-duals and those of constant
rank spaces. ¢



Ask zeta functions of generic matrices
Proof (less sketchy).

@ Let ( be the identity on Mgye(Zp), viewed as a module representation

Maxe(Zp) — Hom(Z3, Z2).

o We obtain Zg v, Hom(Mgxe(Zp), L), x— (A — xA).

o Considering the same module representation over a field, if x # 0, then A — xA is
onto. Hence, (° mod p parameterises a space of matrices of constant rank e.

@ Hence, using our earlier theorem (with (d, e, de,e) in place of ({,1,d,e)) yields

1— .pdefdfeT
(1 —pdedT)(1 —pde—eT)’

Z3EK(T) =

@ Thus, finally,
T—p~°T
(1=T)(1 —pd=eT)’

I3 o2y (T) = Z2(T) = 28K (p*%T) =

as claimed. ¢



Further examples

Similar reasoning applies to many of the "“usual suspects” among modules of matrices.
Recall the definitions of the special linear, orthogonal, and symplectic Lie algebras

sla(R) = {a € gly(R) : trace(a) = o},
504(R) = {a cglyR):a+a' = O}, and
sp,4(R) = { [2 _H ca,b,c € Mg(R),b=>b",c = CT} !



Further examples
Proposition (R. 2018)

o 73k, (T) =273k, \(T) = Ty (ford >1).
e Zisl‘; (T) - Zizlc(ix(dq)(zp)(-r) - ﬁ%'
Eﬁlz‘d(zmm = 23 ) (T) = "y
® 3, (M = (e
@ All but the last of these examples are explained by hidden constant rank spaces.

We nowadays understand such coincidences between ask zeta functions much
better. In particular:
o The fact that gl4(Zy) and slq(Z,) have the same ask zeta function is an instance of
a more general phenomenon: the rigidity of ask zeta functions under imposing suitably
“admissible” linear relations (Carnevale & R. 2022).
o The fact that s04(Z;) and Mgy (q—1)(Zp) have the same ask zeta function is a
special case of the “Cograph Modelling Theorem” (R. & Voll 2024).



