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Ask zeta functions v1.1
Let R be a ring. Let M θ−→ HomR(V,W) be a finite free module representation. By base
change, for each R-algebra S, we obtain a finite free module representation

M⊗R S
θS−→ HomS(V ⊗R S,W ⊗R S).

Definition
The (analytic) ask zeta function of θ is

ζask
θ (s) =

∑
I

ask(θR/I) · |R/I|−s,

where the sums runs over the ideals of finite norm of R.

This generalises our previous definition of Zask
θ (T). Indeed, if R = Zp, then

ζask
θ (s) = Zask

θ (p−s).



Ask zeta functions v1.1
Exercise
Let M θ−→ Md×e(Z) be finite free over Z. Then:

ζask
θ (s) converges for Re(s) > d+ 1.
ζask
θ (s) =

∏
p prime

ζask
θZp (s).

Using tools from p-adic integration, much more can be said about these functions.

For example:

The abscissa of convergence α = α(θ) of ζask
θ (s) is a rational number.

For some δ = δ(θ) > 0, the function ζask
θ (s) admits meromorphic continuation to

the half-plane {s ∈ C : Re(s) > α− δ}.
Local functional equations / “self-reciprocity”: for p� 0,

ζask
θZp (s)

∣∣∣∣∣
p←p−1= (−pd−s) · ζask

θZp (s).



An instructive example of an ask zeta function
Motivated by probabilistic questions, Linial and Weitz (2000, unpublished) and,
independently, Fulman and Goldstein (2015) proved the following.

Proposition
ask(Md×e(Fq)) = 1+ qd−e − q−e.

The main goal of this lecture will be to prove the following.

Proposition (R. 2018)
For each prime p,

Zask
Md×e(Zp)(T) =

1− p−eT

(1− T)(1− pd−eT)
= 1+ (1+ pd−e − p−e)T +O(T 2).

Our proof will rely on three tools, all of which have been very useful in the study of ask
zeta functions: 1 p-adic integration, 2 constant rank spaces, and 3 Knuth duality.



An instructive example of an ask zeta function

By combining Zask
Md×e(Zp)(T) =

1−p−eT
(1−T)(1−pd−eT)

and the usual Euler product

ζ(s) =
∞∑
n=1

n−s =
∏
p prime

1

1− p−s

of the Riemann zeta function, we obtain the following.

Corollary
ζask
Md×e(Z)(s) = ζ(s)ζ(s− d+ e)/ζ(s+ e). �



Local ask zeta functions as integrals: motivation
What is the size of the kernel of a matrix A =

[
a b

c d

]
∈ M2(Zp) modulo pn?

We’re free to multiply A by elements of GL2(Zp) on either side. Using row and
column operations, we can transform A into a matrix

B =

[
pα 0

0 pβ

]
with 0 6 α 6 β 6∞.

The kernel of multiplication Z/pnZ pδ−→ Z/pnZ is the ideal generated by
pmax(n−δ,0).

The size of this kernel is pn−max(n−δ,0) = pmin(δ,n).

Hence, the kernel of A modulo pn has size pmin(α,n)+min(β,n).

Write v for the (additive) p-adic valuation with v(p) = 1.

Then α = min(v(a), v(b), v(c), v(d)) and α+ β = v(det(A)).



Local ask zeta functions as integrals
Let M θ−→ Md×e(Zp) be a finite free module representation.
It’s not surprising that ζask

θ (s), a function defined as a series of averages, can be
expressed as an integral. Here’s one way of doing this.
For a ∈M and y ∈ Zp, let Kθ(a, y) ∈ [1,∞] be the size of the kernel of the map

(Zp/yZp)d → (Zp/yZp)e

induced by aθ.
Let |·| be the usual p-adic absolute value (on Zp, say) with |p| = p−1.

Proposition (R. 2018)
For s ∈ C with Re(s) > d,

(1− p−1) · ζask
θ (s) =

∫
M×Zp

|y|s−1Kθ(a, y) dµ(a, y), (1)

where µ denotes the Haar measure on M× Zp with total volume 1.



Local ask zeta functions as integrals: minors

We may assume that aθ = A(a) for a matrix of linear forms A(X) ∈ Md×e(Zp[X]).
Using arguments of Voll (2010) and generalising what we did for 2× 2 matrices, we
can express Kθ(a, y) in terms of p-adic maximum norms of minors of A(a) and y:

Lemma
Let fi(X) be the set of i× i minors of A(X). Let r = max(rkQp(A(a)) : a ∈M) and
let N = {a ∈M : rkQp(A(a)) < r}. Then N has measure zero (w.r.t. the normalised
Haar measure on M) and for all a ∈M \N and y ∈ Zp \ {0},

Kθ(a, y) = |y|r−d
r∏
i=1

‖fi−1(a)‖
‖fi(a) ∪ yfi−1(a)‖

.



Local ask zeta functions as integrals: minors

Proof.
Fix a ∈M \N and y ∈ Zp \ {0}. Let n = v(y).
By basic linear algebra (“elementary divisor theorem”, “Smith normal form”), there
are integers 0 6 λ1 6 · · · 6 λr and matrices R ∈ GLd(Zp) and S ∈ GLe(Zp) such
that

RA(a)S = diag(pλ1 , . . . , pλr , 0, . . . , 0) =: D.

Linear algebra also tells us that A(a) and D have the same ideals of minors of any
order. Since the ideal of i× i minors of D is generated by pλ1+···+λi , we obtain

‖fi(a)‖ = p−λ1−···−λi .



Local ask zeta functions as integrals: minors

Proof (contd).
Generalising our motivating 2× 2 example, looking at D, we find that

Kθ(a, y) = pmin(λ1,n)+···+min(λr,n)+(d−r)n.

The claim follows since

pmin(λi,n) =
1

max(p−λi , p−n) =
p−λ1−···−λi−1

max(p−λ1−···−λi , p−n−λ1−···−λi−1)

=
‖fi−1(a)‖

‖fi(a) ∪ yfi−1(a)‖
. �



Local ask zeta functions as integrals: overview

Given M θ−→ Md×e(Zp), we obtained a number r and sets of polynomials fi(X) such that

(1− p−1) · ζask
θ (s) =

∫
M×Zp

|y|s+r−d−1
r∏
i=1

‖fi−1(a)‖
‖fi(a) ∪ yfi−1(a)‖

dµ(a, y).

While potentially unwieldy, these p-adic integrals are amenable to a wide range of
tools developed over the past decades.
Many of these tools were first pioneered in the study of Igusa’s local zeta function.
Key observation: when the fi(X) only consist of monomials, then our integral can
be computed using techniques from polyhedral geometry.



Local ask zeta functions as integrals: consequences
Here, we just record two important consequences:

Theorem (Local rationality)
Zask
θ (T) ∈ Q(T). More precisely, there are m ∈ N0 and nonzero

(a1, b1), . . . , (au, bu) ∈ Z×N0 such that pm
u∏
i=1

(1− paiTbi)Zask
θ (T) ∈ Z[T ].

Theorem (Variation of the prime: “(geometric) Denef formulae”)

Let M θ−→ Md×e(Z) be a finite free module representation. There are
W1(X, T), . . . ,Wr(X, T) ∈ Q(X, T) (which can be written over denominators of the
same shape as above) and Q-defined varieties V1, . . . , Vr such that p� 0,

Zask
θZp (T) =

r∑
i=1

#V̄i(Fp) ·Wi(p, T),

where ·̄ denotes reduction modulo p of fixed Z-forms.



The friendlist ask zeta functions: constant rank spaces
Definition
Let F be a field. A subspace M ⊂ Md×e(F) has constant rank r if M 6= 0 and
rk(a) = r for all a ∈M \ {0}.

Example
Let D be a d-dimensional division algebra over F. Then the regular representation of D
embeds D as a subspace of Md(F) of constant rank d.

Example (band matrices)
The following is an r-dimensional space of r× (2r− 1) matrices of constant rank r:

Br =


x1 x2 . . . xr

. . . . . . . . . . . .
x1 x2 . . . xr

 : x1, . . . , xr ∈ F

 ⊂ Mr×(2r−1)(F).



The friendlist ask zeta functions: constant rank spaces

Proposition (R. 2018)
Let M ⊂ Md×e(Zp) be an isolated submodule of Zp-rank `.
Let r = max(rkQp(a) : a ∈M).
Suppose that the reduction of M modulo p has constant rank r over Fp. (Same r!)
Then

Zask
M (T) =

1− pd−`−rT

(1− pd−`T)(1− pd−rT)
.



The friendlist ask zeta functions: constant rank spaces
Sketch of proof.

Let Md×e(Zp)
·̄−→ Md×e(Fp) denote reduction modulo p.

Since M is isolated, ·̄ induces an isomorphism M/pM ≈ M̄.
Next, one reduces the computation of KM(a, y) to the case that a ∈M \ pM.
Key observation: KM(pa, py) = pdK(a, y).
This leads to

(1− pd−`−s) · ζask
M (s) = 1+ (1− p−1)−1

∫
(M\pM)×pZp

|y|s−1KM(a, y) dµ(a, y).

For a ∈M \ pM, since M̄ has constant rank r, KM(a, p) = pd−r and, more
generally,

KM(a, y) = |y|r−d

for all y ∈ Zp \ {0}.
Evaluating our integral is now straightforward. :) �



Hidden constant rank spaces?
We just proved this:

Proposition
Let M ⊂ Md×e(Zp) be an isolated submodule of Zp-rank `.
Let r = max(rkQp(a) : a ∈M).
Suppose that the reduction of M modulo p has constant rank r over Fp. Then

Zask
M (T) =

1− pd−r−`T

(1− pd−`T)(1− pd−rT)
.

I promised to prove the following:

Proposition

Zask
Md×e(Zp)(T) =

1− p−eT

(1− T)(1− pd−eT)
.

Suspiciously similar formulae. . . even though Md×e(Zp) is about as far from having
constant rank as you can get!



Knuth duality (or: matrix transposes turned up to 11)

Let M θ−→ Hom(V,W) be a module representation over R.
Let (·)∗ = Hom(·, R) be the usual dual of R-modules.
Recall that for A α−→ B, α∗ is the map B∗ → A∗ given by ψα∗ = αψ.
Up to taking duals, we can “permute” the modules M, V , and W to derive further
module representations. We’ll spell this out for the three “involutions”.
Recall that x ∗θ a = x(aθ) for x ∈ V and a ∈M.

Definition
The Knuth duals of θ are:

V
θ◦
−→ Hom(M,W) with a ∗θ◦ x = x ∗θ a for a ∈M and x ∈ V.

W∗
θ•
−→ Hom(V,M∗) with a(x ∗θ• ψ) = (x ∗θ a)ψ for a ∈M, x ∈ V , and ψ ∈W∗.

M
θ∨−−→ Hom(W∗, V∗) with aθ∨ = (aθ)∗ for a ∈M.



Knuth duality (or: matrix transposes turned up to 11)

Example
Let A(X) ∈ Md×e(R[X1, . . . , X`]) be a matrix of linear forms, say

A(X) =

∑̀
h=1

chijXh


ij

.

Up to isotopy, ◦, •, and ∨ are the involutions permuting our three “axes”. In detail:

A(X)◦ is the `× e matrix with (h, j) entry
d∑
i=1
chijXi.

A(X)• is the d× ` matrix with (i, h) entry
e∑
j=1
chijXj.

A(X)∨ = A(X)> is just the transpose of A(X).

For ` = d = e, this is the setting considered by Knuth (1965) in the study of semifields.



Knuth duality (or: matrix transposes turned up to 11)
Theorem (R. 2020)
Let R be a finite quotient of a Dedekind domain (e.g. R = Z/nZ).
Let M θ−→ Hom(V,W) be a module representation over R.
Suppose that M, V, and W are finite. Then:

ask(θ◦) = |M|
|V| ask(θ).

ask(θ•) = ask(θ).
ask(θ∨) = |W|

|V| ask(θ).

Corollary

Let Z`p ≈M
θ−→ Md×e(Zp) be a module representation over Zp. Then:

Zask
θ (T) = Zask

θ◦ (pd−`T) = Zask
θ∨ (qd−eT) = Zask

θ• (T). �



Knuth duality (or: matrix transposes turned up to 11)

Proof of theorem.
We’ll only prove the first part. This only needs |R| <∞ and goes back to an
unpublished note of Linial and Weitz (2020) mentioned before.
Let

Σ(θ) =
{
(x, a) ∈ V ×M : x ∗θ a = 0

}
and note that (x, a) ∈ Σ(θ) if and only if (a, x) ∈ Σ(θ◦).
Clearly, ask(θ) = |Σ(θ)|

|M| .
Hence,

ask(θ◦) = |Σ(θ
◦)|

|V|
=
|Σ(θ)|
|V|

=
|M|
|V|

ask(θ).

This was the same argument as in the proof of the orbit-counting lemma! �



Ask zeta functions of generic matrices
We can now finally prove the following:

Proposition

Zask
Md×e(Zp)(T) =

1− p−eT

(1− T)(1− pd−eT)
.

Sketch of proof.
Over a field F, the ◦-dual of the identity map Md×e(F)→ Hom(Fd, Fe) is

Fd → Hom(Md×e(F), F
e), x 7→ (A 7→ xA).

By playing with the standard basis of Md×e(F), we see that A 7→ xA is onto for
each nonzero x ∈ Fd.
Hence, our ◦-dual parameterises a space of constant rank e.
Now apply our earlier results on ask zeta functions of ◦-duals and those of constant
rank spaces. �



Ask zeta functions of generic matrices
Proof (less sketchy).

Let ι be the identity on Md×e(Zp), viewed as a module representation
Md×e(Zp)→ Hom(Zdp,Zep).
We obtain Zdp

ι◦−→ Hom(Md×e(Zp),Zep), x 7→ (A 7→ xA).
Considering the same module representation over a field, if x 6= 0, then A 7→ xA is
onto. Hence, ι◦ mod p parameterises a space of matrices of constant rank e.
Hence, using our earlier theorem (with (d, e, de, e) in place of (`, r, d, e)) yields

Zask
ι◦ (T) =

1− pde−d−eT

(1− pde−dT)(1− pde−eT)
.

Thus, finally,

Zask
Md×e(Zp)(T) = Zask

ι (T) = Zask
ι◦ (pd−deT) =

1− p−eT

(1− T)(1− pd−eT)
,

as claimed. �



Further examples

Similar reasoning applies to many of the “usual suspects” among modules of matrices.
Recall the definitions of the special linear, orthogonal, and symplectic Lie algebras

sld(R) =
{
a ∈ gld(R) : trace(a) = 0

}
,

sod(R) =
{
a ∈ gld(R) : a+ a> = 0

}
, and

sp2d(R) =

{[
a b

c −a>

]
: a, b, c ∈ Md(R), b = b>, c = c>

}
.



Further examples
Proposition (R. 2018)

Zask
sld(Zp)(T) = Zask

gld(Zp)
(T) = 1−p−dT

(1−T)2
(for d > 1).

Zask
sod(Zp)(T) = Zask

Md×(d−1)(Zp)(T) =
1−p1−dT

(1−T)(1−pT) .

Zask
sp2d(Zp)

(T) = Zask
gl2d(Zp)

(T) = 1−p−2dT
(1−T)2

.

Zask
nd(Zp)(T) =

(1−T)d−1

(1−pT)d
.

All but the last of these examples are explained by hidden constant rank spaces.
We nowadays understand such coincidences between ask zeta functions much
better. In particular:

The fact that gld(Zp) and sld(Zp) have the same ask zeta function is an instance of
a more general phenomenon: the rigidity of ask zeta functions under imposing suitably
“admissible” linear relations (Carnevale & R. 2022).
The fact that sod(Zp) and Md×(d−1)(Zp) have the same ask zeta function is a
special case of the “Cograph Modelling Theorem” (R. & Voll 2024).
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