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Introduction

These lectures are meant as an introduction to and overview of recent (2016—today) work on
generating functions enumerating linear orbits and conjugacy classes of unipotent groups.

@ Lecture 1: Counting orbits and conjugacy classes
e Review of basic facts on group actions
e Zeta functions enumerating orbits and their relatives
e Linearising orbit-counting
@ Lecture 2: Ask zeta functions
e Tools for studying ask zeta functions
e Fundamental properties
o Key examples
@ Tutorial
e Introduction to the Zeta package for SageMath
e Baer groups and graphical groups
o Low nilpotency class suffices
@ Lecture 3: A web of themes and open problems
e Tame vs wild behaviour
o Rigidity and operations
e Open problems


https://torossmann.github.io/Zeta/
https://www.sagemath.org/

Slides and references

These slides and a list of references are available here:
https://torossmann.github.io/cmea



https://torossmann.github.io/cmea
https://torossmann.github.io/cmea

Group actions

Definition
Let G be a group. Let X be a set. A (right) action of G on X is a map

XxG—=X, (x,9)— x.g

such that x.1 =x and (x.g).h =x.(gh) for all x € X and g,h € G.

Example

Each group G acts on itself by conjugation x.g :=x9 := g~ 'xg.

From now on, we'll usually drop the dot and just write xg.



Orbits

Definition
Given an action of G on X and x € X, the orbit of x under G is xG :={xg: g € G}.

Fact
The orbits of G on X partition X.

o We write
X/G :={xG:x e X}

for the quotient of X by the action of G.
@ The orbits of G acting on itself by conjugation are the conjugacy classes of G.
@ We write k(G) for the number of conjugacy classes (“class number”) of G.



The orbit-stabiliser theorem
Definition
Let G act on X. The stabiliser of x € X in G is the subgroup

Stabg(x) :={g € G:xg =x}.

Proposition (“Orbit-stabiliser theorem™)

The rule g — xg induces a bijection Stabg(x) \ G — xG.
In particular, if G and X are finite, then

e __ &
|xG| = |G : Stabg(x)| = Staba ()]



Around the orbit-counting lemma

@ Let G be a finite group acting on a finite set X.
@ We will now recall two classical formulae for the number of orbits |X/G| of G on X.

Lemma
X/G| = & X |Stabg (x)|.
x€X
Proof.
By the orbit-stabiliser theorem, we have
X/G| =) xG|7' =) |G : Stabg(x ’G| > |Stabg(x) ¢

xeX xeX xeX



Around the orbit-counting lemma

The following is often attributed to Burnside, Cauchy, Frobenius, or some combination
of these names. For G acting on X as before and g € G, let

Fix(gIX):{XEX:xg:x}.

Lemma (“Orbit-counting lemma”)

|X/G| = ﬁ > |Fix(g | X)| = average number of fixed points of elements of G on X.
geG

Proof.

o Let £ ={(x,g) € X x G:xg =x} and note that |[Z| = }_[Stabg(x)|.
X

xXe
@ By the preceding lemma, we thus have |Z| = |G| - |X/G|.
@ On the other hand, we also have |Z| = > |Fix(g | X)|. ¢
geG



Enumerating orbits

These lectures revolve around the following:

Question
What can we say about [X/G|, the number of orbits of G on X7

@ Under reasonable hypotheses, for a specific group G acting on a given finite set X,
this can often be viewed as belonging to the field of Computational Group Theory.

That is, |X/G]| is a finite number and there are algorithms for finding it.

@ In particular, we can try to use software such as GAP or Magma to enumerate
orbits.

@ This doesn’t mean that counting orbits is easy, but at least it's a single instance of
a finite problem.


https://en.wikipedia.org/wiki/Computational_group_theory
https://www.gap-system.org/
https://magma.maths.usyd.edu.au/magma/

Enumerating orbits

We'll instead focus on infinitely many instances of finite counting problems.

Question

Let (Gyi)icr be a family of groups, each endowed with an action on a finite set X;.
Can we determine |X;/Gj| as a function of the parameter i?

How do these orbit counts depend on 1?

What about growth rates or other asymptotic properties of |X;/G;|?

We'll be particularly interested in the following special case:

Question

Let (Gi)ier be a family of finite groups.
What can we say about k(Gj;) as a function of i?



Linear orbits

@ Unless otherwise indicated, all rings will be commutative with 1.
e For a ring R, the group GL4(R) (and each of its subgroups) naturally acts on R¢.

@ Basic linear algebra describes the linear orbits of GL4(F) for a field F. Indeed, if
d > 1, then [F¢/ GL4(F)| = 2. Over more general rings, the situation is different:

Exercise

Let p be a prime and d > 1. Let R = Z/p"Z. Then |[RY/GL4(R)| =n +1.

Conjugacy classes of general linear groups are more interesting, even over (finite) fields.

Fact
For fixed d, the number k(GLq4(Fq)) is a polynomial in q.

(This is Exercise 1.190 in Stanley’s “Enumerative combinatorics (Vol. 1)".)



Unipotent groups
For a ring R, let

Ua(R) = o QLR
1
By a unipotent group, we mean a subgroup of Ugq(R) for some d. Linear orbits of Ugq(F4) can

be easily determined.

Exercise
[F3/Ua(Fq)| =dq—d+1=d(q—1)+1.

Conjecture (Higman 1960)
k(Uq(Fq)) is a polynomial in g.

Exercise
k(Us(Fg)) =q*+q—1.



Manufacturing unipotent groups
The groups that we'll consider will be unipotent groups of the form
G(R),
where we think of G as a “blueprint” of actual groups obtained by providing rings R

such as Z/p"Z (p prime). Important example to keep in mind: G = Uy.

Over the course of these lectures, we'll consider (unipotent) groups constructed out of
the following raw materials:

e Graphs (“Graphical groups”).

@ Alternating bilinear maps (“Baer groups”).

@ General bilinear maps.

e Nilpotent Lie algebras (“Lazard correspondence™).

The last of these group factories is, in a sense, the most general. In particular, for our
purposes, it generates all unipotent groups, at least when p > 0.



The Lazard correspondence

@ Let p be a prime. The Lazard correspondence is an explicit equivalence of
categories between

o finitely generated nilpotent pro-p groups of class < p and
o finitely generated nilpotent Lie Z-algebras of class < p.

@ This correspondence induces an equivalence between

o finite p-groups of class < p and
o finite Lie Z-algebras of class < p.

@ The Lazard correspondence is well-behaved, e.g. with respect to the subgroup and
subalgebra structure.



The Lazard correspondence: intrinsic form

@ Recall the Hausdorff series

H(X,Y) = log(exp(X) exp(Y))
1 1
=X+Y 45XV + 55 (%X YD+ XD + - - € QEX, V),
where X and Y are non-commuting variables. (This needs some work!)
@ Given a finitely generated nilpotent Lie Z,-algebra g of class < p, we obtain a
group exp(L) with underlying topological space g and multiplication xy = H(x, y).



The Lazard correspondence: linear case
@ For aring R, let

Ozt *
0
nd(R) S )
*
0

a subalgebra of gl4(R). Note that a® = 0 (associative power!) for all a € ng(R).

° ’Suppose that p > d. ‘

Then the exponential series yields a polynomial bijection

1 1
na(Zy) = UalZp), a— exp(a) :1—|—a+zaz+m+ (d—])'adi]
with polynomial inverse
A ! 2 Gl a-1
UalZp) = na(Zp), girloglg) =(g—1)—5(g—1"=-+ 7= (g—1)



Orbit and class-counting zeta functions v1.0

Let G < GL4(Zp) be a (closed) subgroup. For n > 0, let G be the (finite!) image of
G under the natural map GLq4(Z,) - GL4(Z/p"Z).

Definition
@ The (algebraic) orbit-counting zeta function of G is

ZX(M) =) |(Z/p"2)%/Gn|T™

n=0

@ The (algebraic) class-counting zeta function of G is

ZE(M) =) k(G

n=0

If you prefer honest “zeta functions” / Dirichlet series: replace T by p~*.



Orbit and class-counting zeta functions v1.0

Some shout-outs:

Remark

o Class-counting zeta functions were introduced by du Sautoy (2005).

@ Orbit-counting zeta functions were defined in (R. 2018). They generalise the
similarity class zeta functions of Avni, Klopsch, Onn, and Voll (2016).

@ Berman, Derakhshan, Onn, and Paajanen (2013) studied class-counting zeta
functions attached to Chevalley groups.

e Lins (2019, 2020) studied bivariate versions of class-counting zeta functions,
enumerating conjugacy classes according to their sizes.

Theorem

@ (du Sautoy 2005) ZE(T) € Q(T).
o (R.2018) Z(T) € Q(T).

Without further assumptions on G < GLq4(Z,), little more seems to be known about
these functions!



Module representations
Let R be a ring.
Definition

A module representation over R is a module homomorphism M 5, Hom(V, W),
where M, V, and W are R-modules.

A module representation 0 gives rise to (and is in fact equivalently determined by) the

associated bilinear product
x: VXMW

defined by x xg a = x(ab) (x € V, a € M).

Example

We identify Hom(R%, R¢) = Myy.(R): matrices act by right multiplication on rows.
The identity map Mgxe(R) — Mgxe(R) = Hom(RY, R¢) corresponds to the usual
product R4 x Mg,.(R) — RE.



Module representations

Example

If M C Hom(V, W) is a submodule, then the inclusion M < Hom(V, W) is a module
representation, which we just call M.

Example
Let g be a Lie R-algebra. Then the adjoint representation

g — Homg Mod(g,9), a+— [,d]

is a module representation.



Module representations
Example

Let A(X) = A(Xq,...,Xg) € Maxe(R[X]) be a matrix of linear forms. Then A(X)
defines a module representation by specialisation

RY 5 Maxe(R), x— A(x).

Conversely, every module representation R — Mgy (R) is of this form for a unique
matrix of linear forms.

Definition

Two module representations M 9, Hom(V, W) and M’ o Hom (V’,W’) are isotopic
if a choice of isomorphisms M ~ M’, V ~ V', and W ~ W' transforms 0 into 0.

Our terminology goes back to work of Albert (1942). Let M o Hom(V, W) be a
module representation which is finite free in the sense that each of M, V, and W is
free of finite rank as an R-module. Then 0 is isotopic to the module representation
associated with a matrix of linear forms.



Average sizes of kernels

Let M & Hom(V; W) be a module representation involving finite modules (as sets!).
Definition
The average size of the kernel of the elements of M acting as maps V — W via 0 is

ask(0 Z |Ker(a)]
| aeM

For a Zp-module M, let M;, = M ®z, Z/p"Z, the “reduction modulo p™" of M.
Let M Hom(V, W) be a finite free module representation over Z,. We obtain an
induced module representation M,, s Hom (Vyn, Wy ) for each n > 0.

Example

Let © be the module representation Zg — Maxe(Zy) associated with a matrix of linear
forms A(X). Then 0;, corresponds to simply reducing A(X) modulo p™.



Ask zeta functions v1.0

Definition

Let M 2% Hom(V, W) be a finite free module representation over Z,. The (algebraic)
ask zeta function of 0 is

ZF(T) = ) ask(0,)T™
n=0
Theorem (R. 2018)

Z3K(T) € Q(T).

Ask zeta functions generalise and linearise orbit-counting and class-counting zeta
functions of unipotent groups as follows.



Ask zeta functions generalise orbit-counting zeta functions

Proposition (R. 2018)

Let g C ng(Zy) be a Lie subalgebra. Suppose that p > d. Let G = exp(g) < Uq(Zp).
Then Z(T) = Z2(T).

Sketch of proof.

@ The Lazard correspondence interacts nicely with reduction modulo p*. We may
thus assume that g C ng(Z/p"Z) and G = exp(g) < U4(Z/p"Z). Let
V = (Z/p"Z)4.

@ Our goal is to show that |V/G| = ask(g).

@ Orbit-counting lemma:
1 :
IV/Gl = 155 D_Fix(g ] V).

geq
o Exercise: Fix(exp(a)|V) = Ker(a| V).

Intuition: exp(a) ~ 1+ a so xexp(a) = x iff xa ~ 0.



Ask zeta functions generalise class-counting zeta functions

Exercise

Let U be a Z,-submodule of Zg. Then the following are equivalent:
° ZS/U is torsion-free.

o U is a direct summand of Zg.

We call U isolated (as a submodule of Zg) if either condition is satisfied
Proposition (R. 2018)

Let g C ng(Zy) be an isolated Lie subalgebra. Let p > d and G = exp(g) < Uq(Zp).
Then ZE(T) = zggkg(T).



Ask zeta functions generalise class-counting zeta functions

Sketch of proof.

@ As in the previous proof, this reduces to the finite case.
@ Our goal is to show that k(G) = ask(ady).
@ The class number of G is the average order of a centraliser:

161 2 (C6l9

gei

o Exercise: Cg(exp(a)) = exp(cg(a)).
@ The claim follows since ¢g(a) = Ker(adg(a)).



Where do we go from here?

@ We saw that, excluding small primes, orbit- and class-counting zeta functions of
unipotent groups are instances of ask zeta functions.

@ A “local version” of this also works for principal congruence subgroups of p-adic
analytic groups.

@ Conversely, we'll later see that ask zeta functions always enumerate orbits of
suitable groups. (Some of them also enumerate conjugacy classes.)

@ Hence, again ignoring small primes, studying ask zeta functions is essentially the
same as studying orbit-counting zeta functions of unipotent groups.

@ For this translation to be of any value, we need to be able to actually do
meaningful things with ask zeta functions!



