Enumerating orbits of groups Lecture 1: Counting orbits and conjugacy classes

Tobias Rossmann

ICTS, Bengaluru — December 2024

OLLSCOIL NA GAILLIMHE **UNIVERSITY OF GALWAY**

Introduction

These lectures are meant as an introduction to and overview of recent (2016–today) work on generating functions enumerating linear orbits and conjugacy classes of unipotent groups.

- Lecture 1: Counting orbits and conjugacy classes
	- Review of basic facts on group actions
	- Zeta functions enumerating orbits and their relatives
	- Linearising orbit-counting
- **Q** Lecture 2: Ask zeta functions
	- Tools for studying ask zeta functions
	- **•** Fundamental properties
	- Key examples
- **o** Tutorial
	- Introduction to the [Zeta](https://torossmann.github.io/Zeta/) package for [SageMath](https://www.sagemath.org/)
	- Baer groups and graphical groups
	- Low nilpotency class suffices
- Lecture 3: A web of themes and open problems
	- **Tame vs wild behaviour**
	- Rigidity and operations
	- Open problems

Slides and references

These slides and a list of references are available here: <https://torossmann.github.io/cmea>

Group actions

Definition

Let G be a group. Let X be a set. A **(right) action** of G on X is a map

 $X \times G \rightarrow X$, $(x, q) \mapsto x.q$

such that $x.1 = x$ and $(x.g).h = x.(gh)$ for all $x \in X$ and $g, h \in G$.

Example

Each group G acts on itself by **conjugation** $x.g := x^g := g^{-1}xg$.

From now on, we'll usually drop the dot and just write xq .

Orbits

Definition

Given an action of G on X and $x \in X$, the **orbit** of x under G is $xG := \{xg : g \in G\}$.

Fact

The orbits of G on X partition X .

• We write

 $X/G := \{xG : x \in X\}$

for the **quotient** of X by the action of G .

- The orbits of G acting on itself by conjugation are the **conjugacy classes** of G.
- We write k(G) for the number of conjugacy classes ("**class number**") of G.

The orbit-stabiliser theorem

Definition

Let G act on X. The **stabiliser** of $x \in X$ in G is the subgroup

$$
\mathrm{Stab}_G(x):=\{g\in G:xg=x\}.
$$

Proposition ("Orbit-stabiliser theorem")

The rule $g \mapsto xg$ induces a bijection $\mathrm{Stab}_G(x) \setminus G \to xG$. In particular, if G and X are finite, then

$$
|xG| = |G : \mathrm{Stab}_G(x)| = \frac{|G|}{|\mathrm{Stab}_G(x)|}.
$$

Around the orbit-counting lemma

- \bullet Let G be a finite group acting on a finite set X.
- \bullet We will now recall two classical formulae for the number of orbits $|X/G|$ of G on X.

Lemma

$$
|X/G| = \tfrac{1}{|G|}\sum_{x \in X} |\mathrm{Stab}_G(x)|.
$$

Proof.

By the orbit-stabiliser theorem, we have

$$
|X/G| = \sum_{x \in X} |xG|^{-1} = \sum_{x \in X} |G : \operatorname{Stab}_G(x)|^{-1} = \frac{1}{|G|} \sum_{x \in X} |\operatorname{Stab}_G(x)|.
$$

Around the orbit-counting lemma

The following is often attributed to Burnside, Cauchy, Frobenius, or some combination of these names. For G acting on X as before and $q \in G$, let

$$
Fix(g\mid X)=\Big\{x\in X:xg=x\Big\}.
$$

Lemma ("Orbit-counting lemma") $|X/G| = \frac{1}{|G|}$ $\frac{1}{|G|}$ $\sum_{n \geq 0}$ g∈G $|Fix(g | X)| =$ average number of fixed points of elements of G on X.

Proof.

- Let $\Sigma = \{ (x, g) \in X \times G : xg = x \}$ and note that $|\Sigma| = \sum |\text{Stab}_G(x)|$. x∈X
- By the preceding lemma, we thus have $|\Sigma| = |G| \cdot |X/G|$.
- On the other hand, we also have $|\Sigma| = \sum |\text{Fix}(g \mid X)|$. g∈G

Enumerating orbits

These lectures revolve around the following:

Question

What can we say about $|X/G|$, the number of orbits of G on X?

- \bullet Under reasonable hypotheses, for a specific group G acting on a given finite set X, this can often be viewed as belonging to the field of [Computational Group Theory.](https://en.wikipedia.org/wiki/Computational_group_theory) That is, $|X/G|$ is a finite number and there are algorithms for finding it.
- In particular, we can try to use software such as [GAP](https://www.gap-system.org/) or [Magma](https://magma.maths.usyd.edu.au/magma/) to enumerate orbits.
- This doesn't mean that counting orbits is easy, but at least it's a *single* instance of a finite problem.

Enumerating orbits

We'll instead focus on *infinitely* many instances of finite counting problems.

Question

Let $(\mathsf{G_i})_{i\in I}$ be a family of groups, each endowed with an action on a finite set $\mathsf{X_i}.$ Can we determine $|X_i/G_i|$ as a function of the parameter i ? How do these orbit counts depend on i? What about growth rates or other asymptotic properties of $|{\rm X_i/G_i}|?$

We'll be particularly interested in the following special case:

Question Let $(G_i)_{i\in I}$ be a family of finite groups. What can we say about $k(G_i)$ as a function of i?

Linear orbits

- Unless otherwise indicated, all rings will be commutative with 1.
- For a ring R, the group $\mathrm{GL_d}(\mathsf{R})$ (and each of its subgroups) naturally acts on $\mathsf{R}^\mathsf{d}.$
- \bullet Basic linear algebra describes the linear orbits of $GL_d(F)$ for a field F. Indeed, if $d \geqslant 1$, then $|F^d/\operatorname{GL}_d(F)| = 2$. Over more general rings, the situation is different:

Exercise

Let p be a prime and $d \geqslant 1$. Let $R = \mathbf{Z}/p^n\mathbf{Z}$. Then $|\mathsf{R}^d/\operatorname{GL}_d(R)| = n+1$.

Conjugacy classes of general linear groups are more interesting, even over (finite) fields.

Fact

For fixed d, the number $k(GL_d(\mathbf{F}_q))$ is a polynomial in q.

(This is Exercise 1.190 in Stanley's "Enumerative combinatorics (Vol. 1)".)

Unipotent groups For a ring R, let

$$
U_d(R) = \begin{bmatrix} 1 & * & \dots & * \\ & 1 & \ddots & \vdots \\ & & \ddots & * \\ & & & 1 \end{bmatrix} \leqslant GL_d(R).
$$

By a **unipotent** group, we mean a subgroup of $U_d(R)$ for some d. Linear orbits of $U_d(F_q)$ can be easily determined.

Exercise

$$
|\mathbf{F}_q^d/U_d(\mathbf{F}_q)|=dq-d+1=d(q-1)+1.
$$

Conjecture (Higman 1960)

```
k(U_d(\mathbf{F}_q)) is a polynomial in q.
```
Exercise

 $k(U_3(F_q)) = q^2 + q - 1.$

Manufacturing unipotent groups

The groups that we'll consider will be unipotent groups of the form

$G(R)$,

where we think of G as a "blueprint" of actual groups obtained by providing rings R such as $\mathbf{Z}/p^n\mathbf{Z}$ (p prime). Important example to keep in mind: $\mathbf{G} = U_d$.

Over the course of these lectures, we'll consider (unipotent) groups constructed out of the following raw materials:

- Graphs ("Graphical groups").
- Alternating bilinear maps ("Baer groups").
- General bilinear maps.
- Nilpotent Lie algebras ("Lazard correspondence").

The last of these group factories is, in a sense, the most general. In particular, for our purposes, it generates all unipotent groups, at least when $p \gg 0$.

The Lazard correspondence

Let p be a prime. The **Lazard correspondence** is an explicit equivalence of categories between

- finitely generated nilpotent pro-p groups of class $\langle p \rangle$ and
- finitely generated nilpotent Lie \mathbf{Z}_p -algebras of class $\lt p$.
- This correspondence induces an equivalence between
	- finite p-groups of class $\langle p \rangle$ and
	- finite Lie \mathbb{Z}_p -algebras of class $\langle p \rangle$.
- The Lazard correspondence is well-behaved, e.g. with respect to the subgroup and subalgebra structure.

The Lazard correspondence: intrinsic form

Recall the **Hausdorff series**

 $H(X, Y) = log(exp(X) exp(Y))$ $= X + Y + \frac{1}{2}$ $\frac{1}{2}[X, Y] + \frac{1}{12}([X, [X, Y]] + [Y, [Y, X]]) + \cdots \in \mathbf{Q}\langle\langle X, Y\rangle\rangle,$

where X and Y are non-commuting variables. (This needs some work!) Given a finitely generated nilpotent Lie \mathbf{Z}_p -algebra g of class $\langle p \rangle$, we obtain a group $\exp(L)$ with underlying topological space g and multiplication $xy = H(x, y)$.

The Lazard correspondence: linear case

• For a ring R, let

$$
\mathfrak{n}_d(R)=\begin{bmatrix}0&\ast&\dots&\ast\\ &0&\ddots&\vdots\\ &&\ddots&\ast\\ &&&0\end{bmatrix},
$$

a subalgebra of $\mathfrak{gl}_d(R)$. Note that $\mathfrak{a}^d=0$ (associative power!) for all $\mathfrak{a}\in\mathfrak{n}_d(R)$.

• Suppose that $p \geq d$.

Then the exponential series yields a polynomial bijection

$$
\mathfrak{n}_d(\mathbf{Z}_p) \to \mathrm{U}_d(\mathbf{Z}_p), \quad \mathfrak{a} \mapsto \exp(\mathfrak{a}) = 1 + \mathfrak{a} + \frac{1}{2}\mathfrak{a}^2 + \cdots + \frac{1}{(d-1)!}\mathfrak{a}^{d-1}
$$

with polynomial inverse

 $U_d(\mathbf{Z}_p) \to \mathfrak{n}_d(\mathbf{Z}_p), \quad g \mapsto \log(g) = (g-1) - \frac{1}{2}(g-1)^2 \pm \cdots + \frac{(-1)^d}{d-1}$ $\frac{(-1)}{d-1}(g-1)^{d-1}.$

Orbit and class-counting zeta functions v1.0

Let $G \leqslant GL_d(\mathbb{Z}_n)$ be a (closed) subgroup. For $n \geqslant 0$, let G_n be the (finite!) image of G under the natural map $GL_d(\mathbf{Z}_p) \rightarrow GL_d(\mathbf{Z}/p^n\mathbf{Z})$.

Definition

The (algebraic) **orbit-counting zeta function** of G is

$$
Z_G^{oc}(T)=\sum_{n=0}^\infty |(\mathbf{Z}/p^n\mathbf{Z})^d/G_n|T^n.
$$

The (algebraic) **class-counting zeta function** of G is

$$
Z_G^{cc}(T) = \sum_{n=0}^{\infty} k(G_n) T^n.
$$

If you prefer honest "zeta functions" / Dirichlet series: replace T by p^{-s} .

Orbit and class-counting zeta functions v1.0

Some shout-outs:

Remark

- Class-counting zeta functions were introduced by du Sautoy (2005).
- Orbit-counting zeta functions were defined in (R. 2018). They generalise the similarity class zeta functions of Avni, Klopsch, Onn, and Voll (2016).
- Berman, Derakhshan, Onn, and Paajanen (2013) studied class-counting zeta functions attached to Chevalley groups.
- Lins (2019, 2020) studied bivariate versions of class-counting zeta functions, enumerating conjugacy classes according to their sizes.

Theorem

- (du Sautoy 2005) $Z_G^{cc}(T) \in \mathbf{Q}(T)$.
- $(R. 2018) Z_G^{\text{oc}}(T) \in \mathbf{Q}(T)$.

Without further assumptions on $G \leqslant GL_d(\mathbf{Z}_p)$, little more seems to be known about these functions!

Module representations

Let R be a ring.

Definition

A **module representation** over R is a module homomorphism $M \xrightarrow{\theta} \text{Hom}(V, W)$, where M, V, and W are R-modules.

A module representation θ gives rise to (and is in fact equivalently determined by) the associated bilinear product

 $*_A: V \times M \rightarrow W$

defined by $x *_{\theta} a = x(a\theta)$ $(x \in V, a \in M)$.

Example

We identify $\rm{Hom}(\mathsf{R}^d,\mathsf{R}^e)=M_{d\times e}(\mathsf{R})$: matrices act by right multiplication on rows. The identity map $M_{d\times e}(R) \to M_{d\times e}(R) = \text{Hom}(R^d, R^e)$ corresponds to the usual product $R^d \times M_{d \times e}(R) \to R^e$.

Module representations

Example

If $M \subset \text{Hom}(V, W)$ is a submodule, then the inclusion $M \hookrightarrow \text{Hom}(V, W)$ is a module representation, which we just call M.

Example

Let α be a Lie R-algebra. Then the adjoint representation

```
\mathfrak{g} \to \text{Hom}_{R\text{-Mod}}(\mathfrak{g}, \mathfrak{g}), \quad \mathfrak{a} \mapsto [\cdot, \mathfrak{a}]
```
is a module representation.

Module representations

Example

Let $A(X) = A(X_1, ..., X_\ell) \in M_{d \times e}(R[X])$ be a matrix of linear forms. Then $A(X)$ defines a module representation by specialisation

 $R^{\ell} \to M_{d \times e}(R), \quad x \mapsto A(x).$

Conversely, every module representation $R^{\ell} \to M_{d \times e}(R)$ is of this form for a unique matrix of linear forms.

Definition

Two module representations $M \xrightarrow{\theta} \text{Hom}(V, W)$ and $M' \xrightarrow{\theta'} \text{Hom}(V', W')$ are **isotopic** if a choice of isomorphisms $M \approx M',\ V \approx V',$ and $W \approx W'$ transforms θ into $\theta'.$

Our terminology goes back to work of Albert (1942). Let $M \xrightarrow{\theta} \text{Hom}(V, W)$ be a module representation which is **finite free** in the sense that each of M, V, and W is free of finite rank as an R-module. Then θ is isotopic to the module representation associated with a matrix of linear forms.

Average sizes of kernels

Let $M \xrightarrow{\theta} \text{Hom}(V, W)$ be a module representation involving finite modules (as sets!).

Definition

The average size of the kernel of the elements of M acting as maps $V \to W$ via θ is

$$
\mathsf{ask}(\theta) = \frac{1}{|M|} \sum_{\alpha \in M} |\mathrm{Ker}(\alpha \theta)|.
$$

For a $\bf Z_p$ -module $\bf M$, let $\bf M_n = M \otimes_{\bf Z_p} {\bf Z}/p^n{\bf Z}$, the "reduction modulo p^n " of $\bf M.$

Let $M \xrightarrow{\theta} \mathrm{Hom}(V, W)$ be a finite free module representation over \mathbf{Z}_p . We obtain an induced module representation $M_n \xrightarrow{\theta_n} \text{Hom}(V_n, W_n)$ for each $n \geq 0$.

Example

Let θ be the module representation $\mathbf{Z}_{p}^{\ell} \to M_{d \times e}(\mathbf{Z}_{p})$ associated with a matrix of linear forms $A(X)$. Then θ_n corresponds to simply reducing $A(X)$ modulo $p^n.$

Ask zeta functions v1.0

Definition

Let $M \xrightarrow{\theta} \text{Hom}(V, W)$ be a finite free module representation over \mathbf{Z}_p . The (algebraic) **ask zeta function** of θ is

$$
Z_{\theta}^{ask}(T) = \sum_{n=0}^{\infty} ask(\theta_n)T^n.
$$

Theorem (R. 2018) $Z_{\theta}^{\text{ask}}(T) \in \mathbf{Q}(T).$

Ask zeta functions generalise and linearise orbit-counting and class-counting zeta functions of unipotent groups as follows.

Ask zeta functions generalise orbit-counting zeta functions

Proposition (R. 2018)

Let $\mathfrak{g} \subset \mathfrak{n}_d(\mathbf{Z}_p)$ be a Lie subalgebra. Suppose that $p \geq d$. Let $G = \exp(\mathfrak{g}) \leq U_d(\mathbf{Z}_p)$. Then $Z_G^{oc}(T) = Z_g^{ask}(T)$.

Sketch of proof.

- The Lazard correspondence interacts nicely with reduction modulo p^k . We may thus assume that $\mathfrak{g} \subset \mathfrak{n}_d(\mathbf{Z}/p^n\mathbf{Z})$ and $G = \exp(\mathfrak{g}) \leq U_d(\mathbf{Z}/p^n\mathbf{Z})$. Let $V = (\mathbf{Z}/p^n \mathbf{Z})^d$.
- \bullet Our goal is to show that $|V/G| = \text{ask}(\mathfrak{g})$.
- Orbit-counting lemma:

$$
|V/G| = \frac{1}{|G|} \sum_{g \in G} |\mathrm{Fix}(g \mid V)|.
$$

• Exercise: $Fix(exp(a) | V) = Ker(a | V)$. Intuition: $\exp(a) \approx 1 + a$ so $x \exp(a) = x$ iff $xa \approx 0$.

Ask zeta functions generalise class-counting zeta functions

Exercise

Let U be a \mathbf{Z}_p -submodule of $\mathbf{Z}_\text{p}^\text{d}$. Then the following are equivalent:

- $\mathbf{Z}_\text{p}^\text{d}/\mathbf{U}$ is torsion-free.
- U is a direct summand of \mathbf{Z}_{p}^{d} .

We call \sf{U} **isolated** (as a submodule of $\mathbf{Z}_\mathrm{p}^\mathrm{d}$) if either condition is satisfied.

Proposition (R. 2018)

Let $\mathfrak{g} \subset \mathfrak{n}_d(\mathbf{Z}_p)$ be an isolated Lie subalgebra. Let $p \geq d$ and $G = \exp(\mathfrak{g}) \leq U_d(\mathbf{Z}_p)$. Then $Z_G^{cc}(T) = Z_{\text{ad}_\mathfrak{g}}^{\text{ask}}(T)$.

Ask zeta functions generalise class-counting zeta functions

Sketch of proof.

- As in the previous proof, this reduces to the finite case.
- \bullet Our goal is to show that $k(G) = ask(ad_n)$.
- The class number of G is the average order of a centraliser:

$$
k(G) = \frac{1}{|G|} \sum_{g \in G} |C_G(g)|.
$$

- Exercise: $C_G(\exp(\alpha)) = \exp(c_\alpha(\alpha)).$
- The claim follows since $c_{\alpha}(\alpha) = \text{Ker}(\text{ad}_{\alpha}(\alpha)).$

Where do we go from here?

- We saw that, excluding small primes, orbit- and class-counting zeta functions of unipotent groups are instances of ask zeta functions.
- A "local version" of this also works for principal congruence subgroups of p-adic analytic groups.
- Conversely, we'll later see that ask zeta functions always enumerate orbits of suitable groups. (Some of them also enumerate conjugacy classes.)
- Hence, again ignoring small primes, studying ask zeta functions is essentially the same as studying orbit-counting zeta functions of unipotent groups.
- For this translation to be of any value, we need to be able to actually do meaningful things with ask zeta functions!