Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q - t}{q {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
1 vertex: | [0] |
0 edges: | [] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{2} t + q^{2} - 4 \, q t + t^{2} + t}{q^{2} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
2 vertices: | [0, 1] |
0 edges: | [] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{2} - t}{q^{2} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
2 vertices: | [0, 1] |
1 edge: | [[0, 1]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{3} t^{2} + 4 \, q^{3} t - 6 \, q^{2} t^{2} + q^{3} - 12 \, q^{2} t + 12 \, q t^{2} - t^{3} + 6 \, q t - 4 \, t^{2} - t}{q^{3} {\left(t - 1\right)}^{4}}\) |
Graph: | |
---|---|
3 vertices: | [0, 1, 2] |
0 edges: | [] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{3} t + q^{3} - 2 \, q^{2} t - 2 \, q t + t^{2} + t}{q^{3} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
3 vertices: | [0, 1, 2] |
1 edge: | [[1, 2]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{4} + q^{3} t - 4 \, q^{2} t + q t + t^{2}}{{\left(q - t\right)} q^{3} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
3 vertices: | [0, 1, 2] |
2 edges: | [[0, 2], [1, 2]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{3} - t}{q^{3} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
3 vertices: | [0, 1, 2] |
3 edges: | [[0, 1], [0, 2], [1, 2]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{4} t^{3} + 11 \, q^{4} t^{2} - 8 \, q^{3} t^{3} + 11 \, q^{4} t - 56 \, q^{3} t^{2} + 24 \, q^{2} t^{3} + q^{4} - 32 \, q^{3} t + 96 \, q^{2} t^{2} - 32 \, q t^{3} + t^{4} + 24 \, q^{2} t - 56 \, q t^{2} + 11 \, t^{3} - 8 \, q t + 11 \, t^{2} + t}{q^{4} {\left(t - 1\right)}^{5}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
0 edges: | [] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{4} t^{2} + 4 \, q^{4} t - 4 \, q^{3} t^{2} + q^{4} - 8 \, q^{3} t + 2 \, q^{2} t^{2} - 2 \, q^{2} t + 8 \, q t^{2} - t^{3} + 4 \, q t - 4 \, t^{2} - t}{q^{4} {\left(t - 1\right)}^{4}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
1 edge: | [[2, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{6} t - 2 \, q^{5} t^{2} - q^{4} t^{3} + q^{6} + q^{4} t^{2} + 6 \, q^{3} t^{3} - 10 \, q^{4} t + 8 \, q^{3} t^{2} - 10 \, q^{2} t^{3} + 6 \, q^{3} t + q^{2} t^{2} + t^{4} - q^{2} t - 2 \, q t^{2} + t^{3}}{{\left(q - t\right)}^{2} q^{4} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
2 edges: | [[1, 3], [2, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{6} + 4 \, q^{5} t + q^{4} t^{2} - 12 \, q^{4} t - 6 \, q^{3} t^{2} + 6 \, q^{3} t + 12 \, q^{2} t^{2} - q^{2} t - 4 \, q t^{2} - t^{3}}{{\left(q - t\right)}^{2} q^{4} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
3 edges: | [[0, 3], [1, 3], [2, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{4} t + q^{4} - 2 \, q^{3} t - 2 \, q t + t^{2} + t}{q^{4} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
3 edges: | [[1, 2], [1, 3], [2, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{4} t + q^{4} - 4 \, q^{2} t + t^{2} + t}{q^{4} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
2 edges: | [[0, 3], [1, 2]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{6} + 2 \, q^{5} t - q^{4} t^{2} - 6 \, q^{4} t + 6 \, q^{2} t^{2} + q^{2} t - 2 \, q t^{2} - t^{3}}{{\left(q - t\right)}^{2} q^{4} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
3 edges: | [[0, 3], [1, 2], [2, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{5} + q^{4} t - 2 \, q^{3} t - 2 \, q^{2} t + q t + t^{2}}{{\left(q - t\right)} q^{4} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
4 edges: | [[0, 3], [1, 2], [1, 3], [2, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{6} + 3 \, q^{4} t - 8 \, q^{3} t + 3 \, q^{2} t + t^{2}}{{\left(q^{2} - t\right)} q^{4} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
4 edges: | [[0, 2], [0, 3], [1, 2], [1, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{6} + q^{4} t - 4 \, q^{3} t + q^{2} t + t^{2}}{{\left(q^{2} - t\right)} q^{4} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
5 edges: | [[0, 2], [0, 3], [1, 2], [1, 3], [2, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{4} - t}{q^{4} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
4 vertices: | [0, 1, 2, 3] |
6 edges: | [[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{5} t^{4} + 26 \, q^{5} t^{3} - 10 \, q^{4} t^{4} + 66 \, q^{5} t^{2} - 180 \, q^{4} t^{3} + 40 \, q^{3} t^{4} + 26 \, q^{5} t - 330 \, q^{4} t^{2} + 480 \, q^{3} t^{3} - 80 \, q^{2} t^{4} + q^{5} - 80 \, q^{4} t + 600 \, q^{3} t^{2} - 600 \, q^{2} t^{3} + 80 \, q t^{4} - t^{5} + 80 \, q^{3} t - 480 \, q^{2} t^{2} + 330 \, q t^{3} - 26 \, t^{4} - 40 \, q^{2} t + 180 \, q t^{2} - 66 \, t^{3} + 10 \, q t - 26 \, t^{2} - t}{q^{5} {\left(t - 1\right)}^{6}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
0 edges: | [] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{5} t^{3} + 11 \, q^{5} t^{2} - 6 \, q^{4} t^{3} + 11 \, q^{5} t - 42 \, q^{4} t^{2} + 10 \, q^{3} t^{3} + q^{5} - 24 \, q^{4} t + 34 \, q^{3} t^{2} + 4 \, q^{2} t^{3} + 4 \, q^{3} t + 34 \, q^{2} t^{2} - 24 \, q t^{3} + t^{4} + 10 \, q^{2} t - 42 \, q t^{2} + 11 \, t^{3} - 6 \, q t + 11 \, t^{2} + t}{q^{5} {\left(t - 1\right)}^{5}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
1 edge: | [[3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{8} t^{2} - 3 \, q^{7} t^{3} + 5 \, q^{6} t^{4} + q^{5} t^{5} + 4 \, q^{8} t - 12 \, q^{7} t^{2} + 4 \, q^{6} t^{3} - 12 \, q^{5} t^{4} - 8 \, q^{4} t^{5} + q^{8} - 3 \, q^{7} t + q^{6} t^{2} + 55 \, q^{5} t^{3} - 16 \, q^{4} t^{4} + 22 \, q^{3} t^{5} - 22 \, q^{6} t + 48 \, q^{5} t^{2} - 132 \, q^{4} t^{3} + 48 \, q^{3} t^{4} - 22 \, q^{2} t^{5} + 22 \, q^{5} t - 16 \, q^{4} t^{2} + 55 \, q^{3} t^{3} + q^{2} t^{4} - 3 \, q t^{5} + t^{6} - 8 \, q^{4} t - 12 \, q^{3} t^{2} + 4 \, q^{2} t^{3} - 12 \, q t^{4} + 4 \, t^{5} + q^{3} t + 5 \, q^{2} t^{2} - 3 \, q t^{3} + t^{4}}{{\left(q - t\right)}^{3} q^{5} {\left(t - 1\right)}^{4}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
2 edges: | [[2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{8} t - 3 \, q^{7} t^{2} - 9 \, q^{6} t^{3} - q^{5} t^{4} + q^{8} + 7 \, q^{7} t + 3 \, q^{6} t^{2} + 41 \, q^{5} t^{3} + 8 \, q^{4} t^{4} - 30 \, q^{6} t - 12 \, q^{5} t^{2} - 54 \, q^{4} t^{3} - 24 \, q^{3} t^{4} + 24 \, q^{5} t + 54 \, q^{4} t^{2} + 12 \, q^{3} t^{3} + 30 \, q^{2} t^{4} - 8 \, q^{4} t - 41 \, q^{3} t^{2} - 3 \, q^{2} t^{3} - 7 \, q t^{4} - t^{5} + q^{3} t + 9 \, q^{2} t^{2} + 3 \, q t^{3} - t^{4}}{{\left(q - t\right)}^{3} q^{5} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
3 edges: | [[1, 4], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{8} + 11 \, q^{7} t + 11 \, q^{6} t^{2} + q^{5} t^{3} - 32 \, q^{6} t - 56 \, q^{5} t^{2} - 8 \, q^{4} t^{3} + 24 \, q^{5} t + 96 \, q^{4} t^{2} + 24 \, q^{3} t^{3} - 8 \, q^{4} t - 56 \, q^{3} t^{2} - 32 \, q^{2} t^{3} + q^{3} t + 11 \, q^{2} t^{2} + 11 \, q t^{3} + t^{4}}{{\left(q - t\right)}^{3} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
4 edges: | [[0, 4], [1, 4], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{5} t^{2} + 4 \, q^{5} t - 4 \, q^{4} t^{2} + q^{5} - 8 \, q^{4} t + 4 \, q^{3} t^{2} + 2 \, q^{3} t - 2 \, q^{2} t^{2} - 4 \, q^{2} t + 8 \, q t^{2} - t^{3} + 4 \, q t - 4 \, t^{2} - t}{q^{5} {\left(t - 1\right)}^{4}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
3 edges: | [[2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{5} t^{2} + 4 \, q^{5} t - 2 \, q^{4} t^{2} + q^{5} - 4 \, q^{4} t - 4 \, q^{3} t^{2} - 8 \, q^{3} t + 8 \, q^{2} t^{2} + 4 \, q^{2} t + 4 \, q t^{2} - t^{3} + 2 \, q t - 4 \, t^{2} - t}{q^{5} {\left(t - 1\right)}^{4}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
2 edges: | [[1, 4], [2, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{8} t - 3 \, q^{7} t^{2} - 3 \, q^{6} t^{3} + q^{5} t^{4} + q^{8} + 3 \, q^{7} t - q^{6} t^{2} + 19 \, q^{5} t^{3} - 2 \, q^{4} t^{4} - 16 \, q^{6} t + 6 \, q^{5} t^{2} - 24 \, q^{4} t^{3} - 6 \, q^{3} t^{4} + 6 \, q^{5} t + 24 \, q^{4} t^{2} - 6 \, q^{3} t^{3} + 16 \, q^{2} t^{4} + 2 \, q^{4} t - 19 \, q^{3} t^{2} + q^{2} t^{3} - 3 \, q t^{4} - t^{5} - q^{3} t + 3 \, q^{2} t^{2} + 3 \, q t^{3} - t^{4}}{{\left(q - t\right)}^{3} q^{5} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
3 edges: | [[1, 4], [2, 3], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{7} t - 2 \, q^{6} t^{2} - q^{5} t^{3} + q^{7} + q^{5} t^{2} + 4 \, q^{4} t^{3} - 6 \, q^{5} t + 4 \, q^{4} t^{2} - 2 \, q^{3} t^{3} - 2 \, q^{4} t + 4 \, q^{3} t^{2} - 6 \, q^{2} t^{3} + 4 \, q^{3} t + q^{2} t^{2} + t^{4} - q^{2} t - 2 \, q t^{2} + t^{3}}{{\left(q - t\right)}^{2} q^{5} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
4 edges: | [[1, 4], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{8} + 5 \, q^{7} t - q^{6} t^{2} - q^{5} t^{3} - 12 \, q^{6} t - 8 \, q^{5} t^{2} + 4 \, q^{4} t^{3} + 24 \, q^{4} t^{2} + 4 \, q^{4} t - 8 \, q^{3} t^{2} - 12 \, q^{2} t^{3} - q^{3} t - q^{2} t^{2} + 5 \, q t^{3} + t^{4}}{{\left(q - t\right)}^{3} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
4 edges: | [[0, 4], [1, 4], [2, 3], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{7} + 4 \, q^{6} t + q^{5} t^{2} - 8 \, q^{5} t - 4 \, q^{4} t^{2} - 2 \, q^{4} t + 2 \, q^{3} t^{2} + 4 \, q^{3} t + 8 \, q^{2} t^{2} - q^{2} t - 4 \, q t^{2} - t^{3}}{{\left(q - t\right)}^{2} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
5 edges: | [[0, 4], [1, 4], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{9} t + q^{9} - 2 \, q^{8} t - 2 \, q^{7} t^{2} + 6 \, q^{7} t - 3 \, q^{5} t^{3} - 20 \, q^{6} t + 5 \, q^{5} t^{2} + 14 \, q^{4} t^{3} + 14 \, q^{5} t + 5 \, q^{4} t^{2} - 20 \, q^{3} t^{3} - 3 \, q^{4} t + 6 \, q^{2} t^{3} - 2 \, q^{2} t^{2} - 2 \, q t^{3} + t^{4} + t^{3}}{{\left(q^{2} - t\right)}^{2} q^{5} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
4 edges: | [[1, 3], [1, 4], [2, 3], [2, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{9} t + q^{9} - 2 \, q^{8} t - 2 \, q^{7} t^{2} + 2 \, q^{7} t + 2 \, q^{6} t^{2} - q^{5} t^{3} - 10 \, q^{6} t + 3 \, q^{5} t^{2} + 6 \, q^{4} t^{3} + 6 \, q^{5} t + 3 \, q^{4} t^{2} - 10 \, q^{3} t^{3} - q^{4} t + 2 \, q^{3} t^{2} + 2 \, q^{2} t^{3} - 2 \, q^{2} t^{2} - 2 \, q t^{3} + t^{4} + t^{3}}{{\left(q^{2} - t\right)}^{2} q^{5} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
5 edges: | [[1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{10} + 3 \, q^{9} t - 3 \, q^{8} t^{2} + q^{7} t^{3} - 7 \, q^{8} t - 5 \, q^{7} t^{2} + q^{6} t^{3} + q^{5} t^{4} - 6 \, q^{7} t + 26 \, q^{6} t^{2} + 6 \, q^{5} t^{3} - 6 \, q^{4} t^{4} + 6 \, q^{6} t - 6 \, q^{5} t^{2} - 26 \, q^{4} t^{3} + 6 \, q^{3} t^{4} - q^{5} t - q^{4} t^{2} + 5 \, q^{3} t^{3} + 7 \, q^{2} t^{4} - q^{3} t^{2} + 3 \, q^{2} t^{3} - 3 \, q t^{4} - t^{5}}{{\left(q^{2} - t\right)} {\left(q - t\right)}^{3} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
4 edges: | [[0, 4], [1, 3], [2, 3], [2, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{9} + 2 \, q^{8} t - q^{7} t^{2} - 3 \, q^{7} t - 2 \, q^{6} t^{2} - q^{5} t^{3} - 8 \, q^{6} t + 6 \, q^{5} t^{2} + 6 \, q^{4} t^{3} + 6 \, q^{5} t + 6 \, q^{4} t^{2} - 8 \, q^{3} t^{3} - q^{4} t - 2 \, q^{3} t^{2} - 3 \, q^{2} t^{3} - q^{2} t^{2} + 2 \, q t^{3} + t^{4}}{{\left(q^{2} - t\right)} {\left(q - t\right)}^{2} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
5 edges: | [[0, 4], [1, 3], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{10} + q^{9} t - 2 \, q^{7} t^{2} - 10 \, q^{7} t + q^{6} t^{2} - q^{5} t^{3} + 6 \, q^{6} t + 8 \, q^{5} t^{2} + 6 \, q^{4} t^{3} - q^{5} t + q^{4} t^{2} - 10 \, q^{3} t^{3} - 2 \, q^{3} t^{2} + q t^{3} + t^{4}}{{\left(q^{2} - t\right)}^{2} {\left(q - t\right)} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
6 edges: | [[0, 4], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{12} + 4 \, q^{10} t - 11 \, q^{9} t + q^{8} t^{2} + 2 \, q^{8} t - 14 \, q^{7} t^{2} + q^{7} t + 32 \, q^{6} t^{2} + q^{5} t^{3} - 14 \, q^{5} t^{2} + 2 \, q^{4} t^{3} + q^{4} t^{2} - 11 \, q^{3} t^{3} + 4 \, q^{2} t^{3} + t^{4}}{{\left(q^{3} - t\right)} {\left(q^{2} - t\right)}^{2} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
6 edges: | [[0, 3], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{9} + 4 \, q^{7} t - 12 \, q^{6} t + q^{5} t^{2} + 6 \, q^{5} t - 6 \, q^{4} t^{2} - q^{4} t + 12 \, q^{3} t^{2} - 4 \, q^{2} t^{2} - t^{3}}{{\left(q^{2} - t\right)}^{2} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
7 edges: | [[0, 3], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{10} + q^{9} t + 2 \, q^{8} t - 2 \, q^{7} t^{2} - 14 \, q^{7} t - 3 \, q^{6} t^{2} - q^{5} t^{3} + 8 \, q^{6} t + 16 \, q^{5} t^{2} + 8 \, q^{4} t^{3} - q^{5} t - 3 \, q^{4} t^{2} - 14 \, q^{3} t^{3} - 2 \, q^{3} t^{2} + 2 \, q^{2} t^{3} + q t^{3} + t^{4}}{{\left(q^{2} - t\right)}^{2} {\left(q - t\right)} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
5 edges: | [[0, 4], [1, 2], [1, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{5} t + q^{5} - 2 \, q^{4} t - 2 \, q t + t^{2} + t}{q^{5} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
6 edges: | [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{6} + q^{5} t - 4 \, q^{3} t + q t + t^{2}}{{\left(q - t\right)} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
6 edges: | [[0, 4], [1, 2], [1, 3], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{6} + q^{5} t - 2 \, q^{4} t - 2 \, q^{2} t + q t + t^{2}}{{\left(q - t\right)} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
7 edges: | [[0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{7} + 2 \, q^{6} t - q^{5} t^{2} - 4 \, q^{5} t - 2 \, q^{4} t + 2 \, q^{3} t^{2} + 4 \, q^{2} t^{2} + q^{2} t - 2 \, q t^{2} - t^{3}}{{\left(q - t\right)}^{2} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
5 edges: | [[0, 3], [1, 2], [1, 4], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{6} + q^{5} t - 4 \, q^{3} t + q t + t^{2}}{{\left(q - t\right)} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
6 edges: | [[0, 3], [0, 4], [1, 2], [1, 4], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{9} + 8 \, q^{7} t - 20 \, q^{6} t + q^{5} t^{2} + 10 \, q^{5} t - 10 \, q^{4} t^{2} - q^{4} t + 20 \, q^{3} t^{2} - 8 \, q^{2} t^{2} - t^{3}}{{\left(q^{2} - t\right)}^{2} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
5 edges: | [[0, 3], [0, 4], [1, 2], [1, 4], [2, 3]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{9} + 2 \, q^{7} t - 6 \, q^{6} t - q^{5} t^{2} + q^{4} t + 6 \, q^{3} t^{2} - 2 \, q^{2} t^{2} - t^{3}}{{\left(q^{2} - t\right)}^{2} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
7 edges: | [[0, 3], [0, 4], [1, 2], [1, 4], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{10} + q^{8} t - q^{7} t - 6 \, q^{6} t - 3 \, q^{5} t^{2} + 3 \, q^{5} t + 6 \, q^{4} t^{2} + q^{3} t^{2} - q^{2} t^{2} - t^{3}}{{\left(q^{3} - t\right)} {\left(q^{2} - t\right)} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
7 edges: | [[0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{7} + q^{5} t - 2 \, q^{4} t - 2 \, q^{3} t + q^{2} t + t^{2}}{{\left(q^{2} - t\right)} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
8 edges: | [[0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{8} + 3 \, q^{5} t - 8 \, q^{4} t + 3 \, q^{3} t + t^{2}}{{\left(q^{3} - t\right)} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
8 edges: | [[0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{8} + q^{5} t - 4 \, q^{4} t + q^{3} t + t^{2}}{{\left(q^{3} - t\right)} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
9 edges: | [[0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{7} t - 2 \, q^{6} t^{2} - q^{5} t^{3} + q^{7} + 2 \, q^{6} t - q^{5} t^{2} + 4 \, q^{4} t^{3} - 10 \, q^{5} t + 6 \, q^{4} t^{2} + 6 \, q^{3} t^{2} - 10 \, q^{2} t^{3} + 4 \, q^{3} t - q^{2} t^{2} + 2 \, q t^{3} + t^{4} - q^{2} t - 2 \, q t^{2} + t^{3}}{{\left(q - t\right)}^{2} q^{5} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
3 edges: | [[0, 1], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle -\frac{q^{5} t + q^{5} - 2 \, q^{3} t - 2 \, q^{2} t + t^{2} + t}{q^{5} {\left(t - 1\right)}^{3}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
4 edges: | [[0, 1], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{9} + 4 \, q^{7} t - 10 \, q^{6} t - q^{5} t^{2} + 2 \, q^{5} t - 2 \, q^{4} t^{2} + q^{4} t + 10 \, q^{3} t^{2} - 4 \, q^{2} t^{2} - t^{3}}{{\left(q^{2} - t\right)}^{2} q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
6 edges: | [[0, 1], [0, 4], [1, 3], [2, 3], [2, 4], [3, 4]] |
Zeta functions | |
---|---|
ask[#]: | \(\displaystyle \frac{q^{5} - t}{q^{5} {\left(t - 1\right)}^{2}}\) |
Graph: | |
---|---|
5 vertices: | [0, 1, 2, 3, 4] |
10 edges: | [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] |